 Statistical Evaluation of Regression Estimates

(
Typically, we would like to determine whether 
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 allows us to infer something about (, the population parameter

(
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is measured with error

  
sb:
standard error of our estimate of ( (se)

Constructing a confidence interval for 
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 (  tbsb

tb:
a t value which is given by the t table {df is equal to N – number of variables in analysis (2 for a simple regression)}

sb:
standard error of our estimate of ( (se)

Several factors will determine how wide one’s confidence interval is:

(i) The greater the number of observations, the more precise is our estimate

(ii) The smaller the sum of squared residuals the more precise is our estimate

(iii) A larger spread in the values of the X’s the greater the precision

-
example of  a confidence interval 
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 = 216.44



se =  38.25



(
95% interval:




[
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 - tbse < ( < 
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 + tbse]




For 95% and 8 df, t = 2.306:




[216.44 – 2.306(38.25) < ( < 216.44 + 2.306(38.25)]




[128.24 < ( < 304.64]

Hypothesis Testing

(
We often would like to know whether our estimate of (, along with its corresponding standard error, allows us to conclude anything about the population parameter (
(
Step 1: Often, we test whether we can conclude  ( is different than 0


H0:
( = 0
{variable X has no effect on Y}


HA:
( ( 0
{variable X has an effect on Y}

(
Step 2: Test statistic:


t  = 
[image: image8.wmf]b
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(
Step 3: This is then compared to a critical value from the t-table for a given level of confidence (two-tailed test) and degrees of freedom (N – 1 – k; k: number of independent variables)


Example:


t = 216.44/38.25 = 5.66


critical value for 95% confidence (( = .05) and 8 df: 2.306


Since 5.66 > 2.306  {reject the null hypothesis}

(
Step 4: Often the rule of thumb when looking at regression output is to reject the null if t > 2, which means that there is a statistically significant relationship between the independent variable and the dependent variable  

Multiple regression

(
So far, we have assumed that a bivariate analysis can accurately capture the effect of one variable on another; it is likely more complex

(
For example, in our training example, we performed the following simple regression:


salesi  = ( + (trainingi


But many factors are omitted (calling area, aptitude at sales, language skills, hours worked)

-
if any of these factors are correlated with sales, 
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will be biased (as it contains information about the effect of these other factors on sales)

(
A regression will normally contain several variables that may affect Y; in general form:


Yi = ( + (1X1i + (2X2i+ (3X3i+ … + (kXki+ ei


(
estimates 
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(
Even though we cannot draw a line in k-dimensions, the strategy of regression remains to minimize the residual sum of squares
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(
The interpretation of the 
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’s is straightforward
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b

:
indicates the effect that a one-unit increase in X1 has on Y, holding X2, X3, …, and Xk constant
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b

:
indicates the effect that a one-unit increase in X2 has on Y, holding X1, X3, …, and Xk constant
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b

:
indicates the effect that a one-unit increase in X3 has on Y, holding X1, X2, …, and Xk constant


…


[image: image16.wmf]k
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:
indicates the effect that a one-unit increase in X1 has on Y, holding X1, X2, X3 …, and Xk-1 constant

(
R2, our goodness of fit measure, will be generated by statistical packages (including EXCEL)

-
intuition of R2: how much variation in Y can be explained by the variation of the X’s, taken together 


-
as add X’s, the R2 will increase

(
Statistical packages will generate standard errors, so one can construct confidence intervals for the population parameters (1, (2, (3, …, and (k based on the estimates from the regression


[
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 - tbse < ( < 
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 + tbse]


tb will come from the table, as with the simple regression; but the degrees of freedom will be n – 1 – k

Hypothesis testing in multiple regression

(
This will once again amount to testing whether each variable, holding the others constant, has a significant effect on Y


H0: (k = 0


HA: (k ( 0

(
Mechanically, we will test the t-statistics against their critical values from the t-table


t(1 = 
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t(2 = 
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t(3 = 
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(
compare each to t-table value (for ( and df)


…


t(k = 
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(
Let’s take our example from before, where we first estimated the impact of days of training on sales per day for telemarketers

	Obs
	sales
	training

	1
	1813
	11.8

	2
	2558
	15.7

	3
	2628
	14

	4
	3217
	22.9

	5
	3228
	20

	 6
	3629
	20.1

	7
	3886
	17.9

	8
	4897
	23.4

	9
	4933
	24.6

	10
	5199
	25.7
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= 216.44

(
We ignored a lot in this analysis, as we noted before; one thing we clearly missed is the number of hours worked


-
this of course increases sales

-
it also might affect how much training a firm offers (they may not want to invest in training part-timers as much)

	Obs
	sales
	training
	Hours

	1
	1813
	11.8
	15

	2
	2558
	15.7
	15

	3
	2628
	14
	30

	4
	3217
	22.9
	25

	5
	3228
	20
	22

	6
	3629
	20.1
	40

	7
	3886
	17.9
	30

	8
	4897
	23.4
	40

	9
	4933
	24.6
	35

	10
	5199
	25.7
	45


(
We now can capture the effect of training on sales, holding hours constant; we estimate the following equation:


sales = -575.13  +  141.31(training) +  47.24(hours)

  


          [42.52]                   [19.04]  


This can be compared to the original simple regression


sales = -645.57  +  216.44(training)




          [38.25]

After controlling for hours, the effect is weaker but still significant at 

the .05 level

ttraining = 3.32  {greater than 2.365, the critical value associated 

   with 7 df and ( = .05}
We now proceed to adding dummy variables to a regression as additional explanatory variables

(
For many questions, including the sales-training relationship, we might want to control for variables measured on a nominal scale, as well as those measured on a ratio scale

-
these may include categorical variables such as shift (1, 2, or 3) or occupation classification (managerial, sales, or support)

-
these may also include dichotomous variables such as sex (male or female) or exempt status

(
We need to transform these variables to dummy variables, which take on values of zero or one

-
categorical variables will generate m – 1 dummy variables, where m is the number of categories


-
dichotomous variables will generate 1 dummy variable


-
omitted category is called the reference group

(
In our example, we might want to control for gender, as one gender may be better at sales (gender might also be related to training and hours worked); thus, its omission is causing bias in the estimated effect of both

	Obs
	sales
	Training
	H
	Female

	1
	1813
	11.8
	15
	0

	2
	2558
	15.7
	15
	1

	3
	2628
	14
	30
	0

	4
	3217
	22.9
	25
	1

	5
	3228
	20
	22
	1

	6
	3629
	20.1
	40
	0

	7
	3886
	17.9
	30
	1

	8
	4897
	23.4
	40
	0

	9
	4933
	24.6
	35
	1

	10
	5199
	25.7
	45
	0









( male is the reference group

(
The following regression can be calculated in excel:


sales = -622.406 + 100.47(training) + 69.02(hours) + 402.19(female)




         [60.12]                   [29.59]             [416.70]


Interpretation of female coefficient is that a female is likely to generate $402.19 extra in sales, holding training and hours constant



ttraining = 100.47/60.12 = 1.67


thours = 69.02/29.59 = 2.33


tfemale = 402.19/416.70 = 0.97


-
since the critical value for ( = .05 and 6 degrees of freedom is 

t = 2.447, none of the variables are statistically significant 

(
For small data sets, cannot add too many control variables because we loose degrees of freedom

Using dummy variables as dependent variables
(
We have assumed that our dependent variable is a measured continuously

(
We can also have a dependent variable that is measured as a dummy variable (called a linear probability model)


Eg:

Yi = α + βX1i + ei
Y : satisfied with job (1 if yes, 0 if no)



X1: hourly earnings
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 : 
measures the proportion increase in the likelihood of satisfaction for a one dollar increase in hourly earnings 
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 = 0.025 ( If earnings increase by $, the probability of satisfaction 

grows by 0.025 or 2.5 percentage points

(
We can also consider multiple independent variables and these multiple variables can be measured as dummy variables 

Yi = α + β1X1i + β2X2i + ei



X2: second shift
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2 : 
measures how much more (or less) likely second shift workers are satisfied compared with first shift workers, holding hourly  earnings constant 


[image: image27.wmf]b

ˆ

2 = -0.346 ( Second shift workers are 34.6 percentage points less likely to be satisfied than first shift workers, holding earnings constant

(
Linear probability models can generate predictions of the likelihood of the dependent variable being one given the independent variables


Problem: not bound to be between zero and one, however

(
Hypothesis testing requires the construction of t-statistics in exactly the same fashion as with continuous dependent variables
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