
!
  

Acknowledgments  
This research was supported by the Society of Actuaries’ Climate Change 
and Environmental Sustainability Research Committee. SK was also 
funded by  the NSF grants OCE-1243158 and AGS-1408897.  

!

!
A key advantage of the empirical stochastic model 
developed here, aside from its excellent performance in 
reproducing diverse statistical characteristics of the 
observed surface temperature variability, is its extreme 
computational efficiency. We have already performed 
100 simulations of the entire 1979–2015 period, which 
took about five days of wall-clock time on a single 
2.5GHz  processor computer. These simulations will be 
further utilized to address the following tasks: 

•  Pinpoint  the origin of model biases in simulating the 
magnitude and distribution of extreme temperature 
events and develop post-processing bias-correction 
procedure to alleviate these biases 

•  Estimate contributions of internal atmospheric 
dynamics and external forcings in the observed 
surface-temperature variability 

•  Obtain (bias corrected) 1979–2015 time series of the 
cold and warm extreme-event magnitude; examine 
the trends in the spatial pattern of these events. 

•  Extrapolate the extreme-event trends into the future 
decades, both statistically and with the use of sea-
surface temperature projections from global models 

•  Estimate predictability of extreme events 
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Fig. 4: Examples of monthly surface-
temperature anomalies with respect to the 
seasonal climatology from observations 
(left) and empirical model simulations (right). 
The first three rows show a persistent JFM 
cold spell; the bottom row exemplifies 
summertime drought conditions.   "
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as supplemental figures and animations can be found at http://
atmo.math.uwm.edu:8181 à S. Kravtsov Data à KRB2016 

Fig. 2 : Variance of surface-temperature 
anomalies with respect to climatology (see 
Fig. 1) in observations (left) and empirical 
model simulation (right). The model captures 
well the variance patterns, but 
underestimates DJF variance."

Fig. 3: Extreme events, observed (top) and 
simulated (middle). The difference between 
simulations and observations is displayed in 
the bottom panel. Shown are 37-yr mean of 
DJF 2.5 (left) and JJA 97.5 percentile of 
surface temperature for each year."

State-of-the-art numerical weather prediction models are expensive 
to run and are subject to biases due to imperfect physical 
parameterizations of unresolved processes. An alternative strategy for 
weather and climate prediction builds on extremely numerically 
efficient empirical stochastic models, which have recently been 
shown to be able to capture detailed statistics of select climatic fields 
of interest (Kravtsov et al. 2016). In this work, we apply this 
technique to obtain ensemble simulations of surface atmospheric 
temperature over North America; these simulations will later be used, 
among other things, to estimate long-term changes in the spatial 
distribution and magnitude of extreme heat waves and cold spells in 
the region. 

Introduction!
"

Model performance!
We analyze here a single 1979–2015 simulation of the empirical model run from random initial 
conditions, which produces a synthetic time series of surface temperature on the NARR 
spatiotemporal grid. This simulation is by construction uncorrelated with the observed data, except 

for, perhaps, forced signals associated with external 
predictors. 

 The model reproduces well the seasonal cycle of 
temperature variance (Fig. 2), albeit it slightly 
underestimates the magnitude of wintertime variability, 
primarily due to overly diffusive (in space) cold polar 
air intrusions from Arctic plains (not shown). 

 The model also captures quite well the spatial 
distribution of extreme cold (Fig. 3, left) and warm 
(Fig. 3, right) events. There seems to be, once again, a 
warm bias in reproducing wintertime extreme cold 
conditions over the central US (Fig. 3c), possibly 
related to the variance bias detected in Figs. 2a,b. The 
bias in hot extremes (Fig. 3f) is less spatially coherent 
and looks more like sampling variability. We will 
examine these biases further in ensemble simulations 
of the empirical model and devise a post-processing 
procedure to correct for these biases when estimating 
long-term trends in extreme-event distributions. 

 One of the major advantages of the empirical 
model considered here is that it is able to capture 
complex spatiotemporal relationships between the 
features of the temperature variability associated with 
forced and internal atmospheric dynamics. Figure 4 
shows examples of anomalous seasonal cold (top three 
rows) and warm conditions (bottom row). Note that the 
persistent cold-spell events we have chosen happen in 
different years in observations and model simulations, 
which means that they likely stem from the internal 
dynamics — and are tentatively due to enhanced 
frequency of synoptic events causing cold-air 
outbreaks in the months considered. On the other hand, 
the July 2012 anomalously warm conditions over US  
Great Plains happen both in observations and in the 
model simulations, suggesting that this pattern is 
externally forced (cf. Hoerling et al. 2014; McKinnon 
et al. 2016). Once again, analysis of ensemble 
simulations of the empirical model will provide further 
details on the contributions of forced signals and 
internal variability to the observed variations of the 
surface temperature. Finally, Figure 5 concentrates on 
daily time scales and shows two analogous examples of 
the observed and simulated propagating temperature 
anomalies associated with internal  synoptic variability. 

 In summary, our empirical model is able to 
capture complex spatiotemporal structure and 
magnitude of the observed temperature  variability.  
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Fig. 1: Seasonal climatology of surface air 
temperature based on NARR reanalysis."

Data  sets and methodology!
"We used surface temperature data set based on National Center for 
Environmental Prediction North American Regional Reanalysis 
(http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html): NARR.  

Fig. 5: Examples of surface temperature 
evolution associated with synoptic events, in 
observations (left) and simulations (right). The 
sequence of events in each column spans the 
period of three days. "
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The NARR data set is 
comprised of 3-hourly  
“observations” on a 
349×277 grid with 
nominal spatial res-
olution of 32 km, over 
the 1979–2015 period; 
about a third of these 
data are from locations 
within North America; 
the resulting data thus 
has a dimension of 
~100000×30000.   
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We subtracted from raw temperature data its seasonal climatology 
(Fig. 1), and built our model in the phase space of surface 
temperature EOFs (Monahan et al. 2009), to account for over 99% 
of the total variability. The model’s building block is a stochastic 
ARMA model for the principal components x, postulated to have the 
following multi-level form (Kravtsov et al. 2005) [dx=xn+1– xn]: 
 
 

where the model’s parameters are found via regularized multiple 
linear regression and depend on seasonal cycle at monthly resolution. 
The model (1) was estimated separately for temperature time series at 
monthly, daily (for deviations from 3-month means) and three-hourly 
(for deviations from daily means) resolutions. Input monthly data for 
the model were obtained by regressing out linear dependence of 
temperature on external predictors: mean NH temperature, AMO, 
PDO and Nino3.4 indices. At the stage of simulation, the model was 
driven by state-dependent noise, whose amplitude was also a 
function of external predictors. The simulated PCs were transformed 
back to physical space, with externally forced signal and seasonal 
climatology added, to provide an emulation of observed variability. 


