Nano Differential Scanning Calorimeter
(Nano DSC)

Getting Started Guide for Models 602000, 602001
Notice

The material contained in this manual, and in the online help for the software used to support this instrument, is believed adequate for the intended use of the instrument. If the instrument or procedures are used for purposes other than those specified herein, confirmation of their suitability must be obtained from TA Instruments. Otherwise, TA Instruments does not guarantee any results and assumes no obligation or liability. TA Instruments also reserves the right to revise this document and to make changes without notice.

TA Instruments may have patents, patent applications, trademarks, copyrights, or other intellectual property covering subject matter in this document. Except as expressly provided in written license agreement from TA Instruments, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

TA Instruments Operating Software, as well as Module, Data Analysis, and Utility Software and their associated manuals and online help, are proprietary and copyrighted by TA Instruments. Purchasers are granted a license to use these software programs on the module and controller with which they were purchased. These programs may not be duplicated by the purchaser without the prior written consent of TA Instruments. Each licensed program shall remain the exclusive property of TA Instruments, and no rights or licenses are granted to the purchaser other than as specified above.

TA Instruments can accept no liability for loss or damage, however caused, arising from the faulty or incorrect use of its products. TA Instruments shall not be liable for any damages caused by interactions between exogenous materials (e.g. chemicals) and parts of the instrument. This includes interactions of gaseous, liquid or solid materials with, for instance, ampoule surfaces and/or parts of the instrument. It also includes gases or vapors leaking from ampoules (e.g. originating from chemical reactions producing gaseous substances), with subsequent cause of damage to the calorimeter.
Introduction

Important: TA Instruments Manual Supplement

Please click the TA Manual Supplement link to access the following important information supplemental to this Getting Started Guide:

- TA Instruments Trademarks
- TA Instruments Patents
- Other Trademarks
- TA Instruments End-User License Agreement
- TA Instruments Offices
Notes, Cautions, and Warnings

This manual uses NOTES, CAUTIONS, and WARNINGS to emphasize important and critical instructions. In the body of the manual these may be found in the shaded box on the outside of the page.

NOTE: A NOTE highlights important information about equipment or procedures.

CAUTION: A CAUTION emphasizes a procedure that may damage equipment or cause loss of data if not followed correctly.

A WARNING indicates a procedure that may be hazardous to the operator or to the environment if not followed correctly.

Regulatory Compliance

Safety Standards

EMC Directive

This instrument has been tested to meet the European Electromagnetic Compatibility Directive (EMC Directive, 2004/108/EC). The Declaration of Conformity for your instrument lists the specific standards to which the unit was tested.

The instrument was designed specifically as a test and measuring device. Compliance to the EMC directive is through IEC 61326-1 Electrical equipment for measurement, control and laboratory use - EMC requirements (1998).

As noted in the IEC 61326-1, the instrument can have varying configurations. Emissions may, in non-typical applications, exceed the levels required by the standard. It is not practical to test all configurations, as the manufacturer has no control over the user application of the instrument.

Immunity Testing

The instrument was tested to the requirements for laboratory locations.

Emission Testing

The instrument fulfills the limit requirements for Class A equipment but does not fulfill the limit requirements for Class B equipment. The instrument was not designated to be used in domestic establishments.
Low Voltage Directive (Safety)
In order to comply with the European Low Voltage Directive (2006/95/EC), this equipment has been
designed to meet IEC 1010-1 (EN 61010-1) standards. To comply with requirements in the USA, this
instrument has been tested to the requirements of UL61010a-1.

Safety

Electrical Safety
There are no user-serviceable parts inside the instrument; voltages as high as 125/250 VAC are present in
this system.

Lifting the Instrument
The Nano DSC is not a portable instrument. In order to avoid injury, particularly to the back, please follow
this advice:

WARNING: Use appropriate care when unpacking or moving the instrument. It may be too
heavy for some individuals working alone to handle safely.
This page is intentionally blank.
Table of Contents

Introduction .. 3
- Important: TA Instruments Manual Supplement ... 3
- Notes, Cautions, and Warnings .. 4
- Regulatory Compliance ... 4
 - Safety Standards .. 4
 - Safety ... 5
 - Electrical Safety ... 5
 - Lifting the Instrument .. 5

Chapter 1: Introducing the Nano DSC ... 9
- Overview .. 9
 - Instrument Models Covered in this Guide ... 9
 - Applications .. 10

- System Components .. 11
 - Options and Accessories .. 11

- Instrument Specifications .. 12

Chapter 2: Installing the Nano DSC ... 13
- Unpacking/Repacking the Nano DSC .. 13
 - Installing the Instrument .. 15

 - Inspecting the System ... 13

- Choosing a Location ... 14
 - In ... 14
 - On .. 14
 - Near ... 14
 - Away from ... 14
 - Power Requirements .. 14
 - Gas Requirements .. 15
 - Electrical Connections ... 15

 - Starting the Nano DSC .. 16

- Shutting Down the Nano DSC .. 17

Chapter 3: Use, Maintenance, & Diagnostics ... 19
- Overview .. 19
 - Preparing the Buffer Solutions ... 19
 - Preparing Dilute Biopolymer Solutions .. 20
 - Degassing the Buffer and Sample Solutions .. 20

- Running Baseline and Sample Solution Scans .. 21
 - Selecting Solutions ... 21
 - Filling Cylindrical Cells .. 21
Chapter: 1

Introducing the Nano DSC

Overview

The TA Instruments Nano Differential Scanning Calorimeter (Nano DSC) is designed specifically for the measurement of absolute heat capacities of biopolymers in dilute solution.

Figure 1 The Nano DSC instrument.

The Nano DSC offers improvement in sensitivity and baseline repeatability. The instrument is a power compensation design using a completely solid-state thermostat and is equipped with fixed continuous platinum capillary or 24K gold cylindrical cells.

With an operating temperature range of –10 to 130°C (or 160°C for high-temperature units), scan rates up to 2°C/min in both the heating and cooling directions, and baseline repeatability of ±0.4 µcal/C @ 1°C/min. The Nano DSC can be used to study the thermal denaturation of many proteins with as little as 52 µg or less of sample.

Instrument Models Covered in this Guide

Models 602000 and 602001
Applications

The Nano DSC allows you to study almost any thermal transition occurring in dilute biopolymer solution in the temperature range of –10 to 130°C. It also offers a new dimension in sensitivity, baseline noise, and baseline repeatability in both heating and cooling modes.

The measurement of absolute heat capacities using the instrument enables the examination of biopolymer solution conformation and solvation, as well as subtle changes in folding.

Studies of biopolymer thermal stability and the effects of biopolymer or ligand interactions on macromolecular structure can be accomplished with the Nano DSC. The baseline repeatability ensures that reliable DCp data can be obtained from a single scan.

Typical uses for the Nano DSC include:

- Biopolymer solution conformation and solvation (absolute heat capacities)
- Biopolymer stability (protein denaturation)
- Biopolymer structure (domain organization)
- Bioengineering (mutant proteins)
- Ligand interactions (drug binding to proteins or nucleic acids)
- Membrane structure (lipid bilayers, membrane proteins)
- Polynucleotides (helix to coil transitions)
System Components

The following items make up a Nano DSC system:

- Nano Differential Scanning Calorimeter
- Power cord
- Computer system (optionally available from TA Instruments) and display monitor with accessories, and all required software with online Help and manual. The computer system is current technology at the time of purchase, and uses the Microsoft Windows operating system.
- Pressure handle and 1 replacement o-ring.
- 1-mL filling syringe and filling needles (cylindrical cell instrument only)
- Cell cleaning adapter with silicone tubing (cylindrical cell instrument only)
- 2.5-mL micropipette with tips and silicone tubing (capillary cell instrument only)
- Silicone tubing for cleaning (capillary cell instrument only)
- Windows-based Experiment Setup, Data Collection and Analysis Software (This software was previously installed at the factory and the supplied disk is typically used for software reinstallation.)

Options and Accessories

The following items are available to complement your Nano DSC instrument:

- Vacuum Degassing System
- Personal computer with Microsoft Windows Operating System
- Additional filling needles
- Replacement 1-mL syringe
- Micropipetter and micropipette tips
- Replacement Nano DSC cleaning adapter
- Replacement silicone tubing for cleaning adapter
- Replacement pressure handle
- Replacement pressure o-ring kit
Instrument Specifications

The table found below contains the technical specifications for the Nano DSC instrument.

Table 1: Nano DSC Technical Specifications

<table>
<thead>
<tr>
<th>Item/Area</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Depth 53 cm (21 in.)</td>
</tr>
<tr>
<td></td>
<td>Width 35 cm (14 in.)</td>
</tr>
<tr>
<td></td>
<td>Height 28 cm (11 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>17 kg (37 lbs)</td>
</tr>
<tr>
<td>Power</td>
<td>100–240 VAC, 3 amps. 50 or 60 Hz</td>
</tr>
<tr>
<td>Operating environmental conditions</td>
<td>Temperature: 15°C to 30°C</td>
</tr>
<tr>
<td></td>
<td>Relative humidity: 5 to 80% (non-condensing)</td>
</tr>
<tr>
<td></td>
<td>Installation category II</td>
</tr>
<tr>
<td></td>
<td>Pollution degree 2</td>
</tr>
<tr>
<td></td>
<td>Maximum altitude: 2500 m (8200 ft)</td>
</tr>
<tr>
<td>Emissions class</td>
<td>Class A</td>
</tr>
<tr>
<td>Temperature range</td>
<td>–10 to 130°C (Standard Temperature) or –10 to 160°C (High Temperature)</td>
</tr>
<tr>
<td>Temperature scan rate</td>
<td>0°C to 2°C/min</td>
</tr>
<tr>
<td>Response time</td>
<td>Halftime = 5 s</td>
</tr>
<tr>
<td>Baseline repeatability</td>
<td>0.028 µW</td>
</tr>
<tr>
<td>Baseline noise</td>
<td>Standard deviation 0.015 µW</td>
</tr>
<tr>
<td>Cell construction</td>
<td>Capillary in platinum or cylindrical in 24K gold</td>
</tr>
<tr>
<td>Cell volume</td>
<td>0.30 mL nominal capillary or 0.33 mL cylindrical</td>
</tr>
<tr>
<td>Cell pressurization range</td>
<td>0 to 6 atm</td>
</tr>
</tbody>
</table>
Chapter: 2

Installing the Nano DSC

Unpacking/Repacking the Nano DSC

WARNING: Do not attempt to unpack this instrument alone.

CAUTION: To avoid mistakes, read this entire chapter before you begin installation.

The instructions needed to unpack and repack the instrument are found as separate unpacking instructions in the shipping box. You may wish to retain all of the shipping hardware and boxes from the instrument in the event you wish to repack and ship your instrument.

Installing the Instrument

Before shipment, the instrument is inspected both electrically and mechanically so that it is ready for operation upon proper installation. Only limited instructions are given in this manual; consult the online documentation for additional information. Installation involves the following procedures:

- Inspecting the system for shipping damage and missing parts
- Connecting the Nano DSC to the computer
- Connecting USB cables

It is recommended that you have your Nano DSC installed by a TA Instruments Service Representative; call for an installation appointment when you receive your instrument.

Inspecting the System

When you receive your instrument, look over the instrument and shipping container carefully for signs of shipping damage, and check the parts received against the enclosed shipping list.

- If the instrument is damaged, notify the carrier and TA Instruments immediately.
- If the instrument is intact but parts are missing, contact TA Instruments.
Choosing a Location

It is important to choose a location for the instrument using the following guidelines. The Nano DSC should be:

In

- a temperature- and humidity-controlled area. Temperatures should be in range 15 to 30°C.
- a clean, vibration-free environment, preferably on the ground floor in the building. It should be located away from pumps, motors, or other devices which produce vibrations.
- an area with ample working and ventilation space. At least 18 by 18 inches is needed for the instrument. Additional space is needed for the computer and (if present) printer.

On

- a stable work surface.

Near

- a power outlet. See the “Power Requirements” section below.
- your computer.

Away from

- dusty environments.
- exposure to direct sunlight.
- direct air drafts (fans, room air ducts).
- poorly ventilated areas.
- noisy or mechanical vibrations.
- high traffic areas, where constant movements from passing personnel could create air currents or mechanical disturbances.

Power Requirements

The Nano DSC requires a grounded, single-phase power source. A three-conductor line cord ensures a safety ground. The operating voltage and line frequency were preset at the factory for 100–240 VAC, 50 or 60 Hz operation.

It is highly recommended that the instrument and computer system should be operated from a single power source. Use a power distribution strip with a surge suppressor function. If the local power mains experience fluctuating voltage or surge conditions, it is also advisable to use a power conditioning uninterruptable power supply (UPS).

The instrument requires one (1) 15-A line for the instrument and computer system. Attach all items to a single surge suppressor plug strip. Plug the surge suppressor strip into an isolated power line. An isolated power line is one that is used only for electronic instruments (i.e., no inductive motors, compressors, or heaters) that do not create power surges upon start-up.

Attach the instrument and all computer accessories to the surge suppressor.
Gas Requirements

Because the Nano DSC is capable of running below room temperature, the calorimeter’s thermal shield features a sealed environment that has been filled with dry nitrogen gas.

CAUTION: The purge port valve on the back of the Nano DSC should remain in the closed position at all times to maintain the integrity of the nitrogen purge.

NOTE: Purging of the canister is not a routine maintenance operation; contact TA Instruments for service if the Nano DSC exhibits unstable baselines especially above 50 or 60°C.

Electrical Connections

1. Make sure all of the equipment is turned off.
2. Make sure the power switch to the surge suppressor is in the OFF position.
3. Plug the power cord into the Nano DSC and the surge suppressor strip.
4. Assemble the computer system per the instructions included in its shipment carton.
5. Install DSCRun software, following the instructions in the “Installing DSC Run” document found on the TA Instruments software CD.
6. Connect the calorimeter to the computer system with the supplied USB cable.
7. Ensure that airflow to the cooling fan on the rear panel of the calorimeter is not blocked by bench back-splashes, walls, or other equipment.
Starting the Nano DSC

Once you have completely set up the calorimeter and computer system, start the instrument as follows:

1. Turn on the surge suppressor power switch and the computer system and monitor. Allow the computer to boot up.

2. Turn on the power switch to the calorimeter, which is located on the back panel. The front LED will light up when in the “on” position.

Figure 2 Power LED on Nano DSC instrument.

3. Start DSCRun™ software on the computer (see the figure below). Instrument control and regulation is supplied by the software. Initial thermal stabilization may take an hour or longer.

Figure 3 DSCRun software screen.
Shutting Down the Nano DSC

You can leave the instrument and its associated components on when the Nano DSC will be inactive for two to five days.

If the Nano DSC will be inactive for more than five days, TA Instruments recommends that you turn all equipment off.
This page is intentionally blank.
Chapter 3
Use, Maintenance, & Diagnostics

Overview

A typical Nano DSC experiment involves the following:

• Preparing the buffer/solvent and biopolymer solutions
• Running the baseline and the sample solution scans
• Cleaning the calorimeter
• Performing a thermodynamic analysis

Each step is briefly described below. Additional information is provided in the online Help supplied with the software program. It is assumed that you are familiar with standard laboratory procedures and techniques. It is critical that the Nano DSC cells be cleaned immediately at the end of each experiment. Although the calorimeter can be left idle with water-filled cells at 25°C when not performing experiments, it will generally perform better when it is left continuously scanning. This is done by filling the cells with deionized degassed water, pressurizing the cell to 45 psi (3 atm), and scanning up and down continuously between the upper and lower temperature limits at 1°C/min.

Preparing the Buffer Solutions

The solvent systems used for preparation of dilute biopolymer solutions are typically buffered aqueous solutions, which often contain supporting strong electrolytes (for example, NaCl or KCl) to adjust the ionic strength. To prepare a buffer, follow these steps:

1. Weigh an appropriate amount of the acidic or basic form of a weak acid (or weak base) into a measured volume of distilled or deionized water.

2. Adjust the pH of the buffer to the desired value by adding either strong acid (for example, HCl) or strong base (for example, NaOH), while monitoring the buffer pH using a pH electrode and meter. The buffer will provide the calorimeter baseline. It will also be used to prepare and dialyze the protein (or nucleic acid) solution.

3. Prepare a rather large volume of the buffer (for example, 1 L). It should be noted that buffers used in DSC experiments should be carefully chosen to meet the following criteria:
 • The pKa should be as independent as possible of the temperature.
 • The ΔH for proton ionization from the buffer acid should be small.
 • All components of the buffer/solvent solution should be thermally stable. (The buffer should not precipitate or change color on boiling.)
Preparing Dilute Biopolymer Solutions

Choose the concentration of the biopolymer to allow optimization of the amount of thermodynamic information. In the case of a typical protein, good heat capacity data can usually be measured for solutions with protein concentrations in the 0.2 to 5 mg/mL range. When possible, obtain the information regarding the optimum concentration and solution conditions for DSC studies of specific biopolymers from the literature.

The minimum of volume of dilute protein solution required to fill the Nano DSC cylindrical cell is 0.5 mL. About 0.65 mL is required to fill a capillary cell. A protein solution is normally be prepared by weight or by dilution of a concentrated stock solution. For the best results, dialyze the protein (or other biopolymer sample) before your DSC experiment. Then use the dialysate for the reference solution.

It must be noted that high sensitivity DSC studies should be done with highly purified biopolymers. Accepted techniques should be used for sample purification prior to solution preparation and dialysis. It is critical to know the solute (biopolymer) molecular weight, concentration and state of oligomerization prior to attempting a thermodynamic analysis of the heat capacity data.

Degassing the Buffer and Sample Solutions

Typically, if a solution is heated, gas bubbles will form as the solubility of dissolved gases (such as O₂ and N₂) is decreased with increasing temperature. If gas bubble formation occurs in the DSC cells during the run, the resulting heat capacity data will be rather noisy since abrupt changes in the apparent heat capacity will result from the bubble driven liquid displacement effects.

All reference and sample solutions must be degassed prior to being placed in the DSC to minimize the possibility of gas bubble formation during the run. Pull a vacuum of 15 to 25 inches Hg on the solutions for a period of 10 to 15 min to degas a sample. An accessory degassing station is available from TA Instruments. Gas bubble formation during the run is retarded by the cell pressure (up to 3 to 6 atm) provided by the DSC manostat. However, it is still necessary to remove the atmospheric gasses from the solutions.
Running Baseline and Sample Solution Scans

The second major step in an experiment includes running the baseline and sample scans. The first step in this procedure is to fill the cells. There are two protocols for filling the cells, depending on the type of Nano DSC cell design. Cylindrical cells utilize a syringe while capillary cells use a pipette. Follow the instructions that relate to your particular type of cell.

Selecting Solutions

Follow these guidelines when choosing the solution to use in your experiments:

- **Baseline Run**: Fill both the sample cell and reference cells with the same solution (buffer dialysate).
- **Sample Run**: Fill the sample cell with the dialyzed protein (or other biopolymer) solution and the reference cell with the dialysate.

Filling Cylindrical Cells

Filling the cell is one of the most important parts of conducting a DSC experiment and should be done with extreme care. The objective is to fill the cell with the appropriate solution without introducing any air bubbles. Even the smallest bubble can result in heat capacity data that is erratic and offset. You will need a 1-mL Hamilton syringe equipped with a 20-gauge needle (this needle and syringe are supplied with your instrument).

NOTE: Proteins in solution have a tendency to foam when manipulated with a pipette.

1. Make sure that the cells are empty. Starting with the reference cell (left-most access tube as viewed from the front of the DSC), begin by filling the syringe with approximately 0.5 mL of solution. You may find that larger volumes make the procedure easier, but it is possible to load the cell correctly with the lesser amount. Be careful not to trap any air bubbles.

2. Insert the syringe into the reference cell and load the calorimeter in the following manner ():
 - Position the needle so that it **lightly** touches the bottom of the reference cell (left access tube) initially. See the figure below.

Figure 4 Inserting the syringe.
b Raise the syringe off the bottom approximately 1/16 in.

c Gently inject the solution into the cell until you see it coming out of the access tube.

3 Slowly pump about 0.1 mL of solution in and out of the access tube and watch to see if bubbles are coming out of the access tube. Perform this operation a number of times until it is apparent that there are no bubbles in the cell.

4 Slowly withdraw the needle from the access tube while simultaneously injecting solution to clear away any bubbles trapped by the needle.

5 When you are finished, the reservoir located at the top of the access tube should be filled up to halfway with solution.

6 Repeat the entire process to fill the sample cell (right access tube). In the case of a baseline run, the sample cell will be filled with the same solution (buffer dialysate) that was placed in the reference cell. In the case of the sample run, the sample cell will be filled with the dialyzed protein (or other biopolymer) solution.

Filling the Capillary Cells

Equipment Required:

- Adjustable 500 to 2500 µL pipette (Eppendorf Series 2000 supplied)
- Tubing (1/16-in. ID Manosil silicone rubber)

NOTE: Additional care must be taken with proteins and other biopolymers since they have a tendency to foam when manipulated with a syringe.

As with a cylindrical cell, filling the capillary cell is one of the most important parts of conducting a DSC experiment and should be done with extreme care. The objective is to fill the cell with the appropriate solution without introducing any air bubbles. Even the smallest bubble can result in heat capacity data that is erratic and offset. You will need an adjustable volume pipette with the volume set between 800 and 1000 µL. (With experience, this volume can be reduced to 0.65 mL).

You will also need four clean pipette tips and four short lengths (approximately 0.5 in) of 1/16 in. I.D. Manosil silicone rubber tubing.

1 Be sure that the samples have been properly degassed. See “Degassing the Buffer and Sample Solutions” on page 20.

2 Displace any residual liquid from the cells by blowing them out with an inert gas (N₂) at low pressure.
3 Prepare the pipette tips, used with the micropipette for loading and cleaning the DSC cells. Fit the disposable plastic tips with a short (approximate 0.5-in. long) length of Manosil silicone tubing to interface with the cell access tubes. The figures below illustrate how to trim and prepare the pipette tips. A length of the appropriate silicone tubing is provided with each calorimeter. Additional tubing can be ordered through your laboratory supplier or TA Instruments.

![Image of cutting the silicon tubing on the pipette tip](image1)

Figure 5 Cutting the silicon tubing on the pipette tip (top image); completed pipette tip (bottom image).

4 For best bubble-free filling, leave the cells full of water while the instrument is idle. Empty the cells immediately before refilling. Aspirate by hand with a syringe, or with a vacuum pump just long enough to remove the liquid (about 2 seconds). This promotes wetting by preventing the cell surface from becoming completely dry.

Aspirate by hand with a syringe or with a vacuum pump just long enough to remove the liquid (about 2 seconds). This promotes wetting by preventing the cell surface from becoming completely dry.

5 Start with the reference cell (left-most pair of access tubes as viewed from the front of the DSC). Attach one pipette tip to either the front or rear access tube.

6 Attach the second pipette tip to the pipette and fill it with at least 650 μL of the reference solution (buffer dialysate).
7 Attach the silicone extension of the pipette tip to the reference cell’s inlet access tube. See the below. Fill the cell slowly (over 5 to 10 seconds) by gently depressing the pipette plunger.

![Pipette and silicone tubing attachment to reference cell access tubes.](Image)

Figure 6 Pipette and silicone tubing attachment to reference cell access tubes.

8 Pipette and silicone tubing attachment to reference cell access tubes.

9 Completely fill the cell until you see solution emerge from the outlet access tube into the empty pipette tip.

10 Hold the outlet pipette tip vertically and make a few short strokes with the pipette plunger to gently force solution back and forth through the capillary cell. Be careful not to introduce air bubbles into the cell by letting either pipette tip go dry. This technique helps to get rid of any bubbles that might still be trapped in the capillary channel.

11 Make sure the reference cell is free of bubbles then remove the pipette tips and pipette from the inlet and outlet access tubes. Minimize solution spillage by covering the open end of the free pipette tip with your thumb while removing it from the access tube.

12 Repeat the entire process to fill the sample cell (right-most pair of access tubes).

13 Cap one of the access tubes with the small black access tube cap (see the figure below). Leave one access tube open on each cell to allow pressurization.

![Cap placement on rear access tubes.](Image)

Figure 7 Cap placement on rear access tubes.

14 Remove excess liquid from the surrounding area outside of the access tubes using suction or a lab tissue.
Cell Pressurization and Checking for Bubbles

The last steps needed when loading the cells are to attach the pressure handle to the access flange, pressurize the cell and check for bubbles. Follow these steps, in order:

1. Screw the threaded ring on the pressure handle onto the access flange tightly, as shown in Figure 8.

Figure 8 Attaching the pressure handle.

CAUTION: Do not pressurize the cells at this time.

2. Make sure the Nano DSC is powered on.

3. Open the DSCRun™ program by double clicking the DSCRun icon located on the Windows desktop (if it is not already running).

4. Wait for the baseline to stabilize within a few tenths of a microwatt before beginning an experiment. Equilibration is complete when the µW reading (as displayed in the Output box shown in the figure below) settles to constant value.
5 Set the manostat pressure to a value of at least 3 atm (up to 6 atm for high-temperature instruments) using **Tools > Runtime variables**.

6 Increase the pressure by clicking on the up arrow in the DSCRun program (see the figure below) while monitoring the manostat pressure as displayed on the computer monitor.
 - If a bubble is present, the µW reading will exhibit a significant momentary change (in excess of 30 µW) as the pressure is increased from 0 to 3 atm.
 - If bubbles are indicated by an unstable µW reading as the cell pressure is applied, the cells must be refilled using the procedures outlined previously.
 - If you see little or no effect, proceed to the next step.

7 Set the experiment parameters and start the scans. See the online Help for more information.

An important final step in any experiment is cleaning the calorimeter. The Nano DSC is an extremely sensitive instrument that will perform well only if kept scrupulously clean. See the next section for information.
Cleaning the Nano DSC

Immediately after every experiment sequence (that is, after the baseline and sample scans are both completed for a specific experiment) the Nano DSC cells should be washed.

CAUTION: The pressure handle should not be attached to the calorimeter during cleaning.

NOTE: Do not clean the cells between the buffer/buffer and the buffer/sample scans).

The general procedure for cleaning the DSC cells with formic acid is described below.

The following cleaning process is suitable for most samples (more vigorous cleaning is accomplished by following the procedures described later in this chapter):

1. Wait until the calorimeter is idling at approximately 25°C then reduce the cell pressure to zero.
2. Click down arrow and **remove the pressure handle** from the access flange when depressurization is complete.
3. Empty the cells as follows:
 - If you have a cylindrical cell, use the 1-mL syringe to remove the solutions from the cells.
 - If you have a capillary design, remove the cell outlet tube caps first and then empty the cells with the pipette or vacuum pump.
 CAUTION: Ensure that the small black caps (capillary cell) and the pressure handle have been removed.
4. Fill the cells with the recommended cleaning solution (50% formic acid), install the pressure handle and set the pressure to 3 bar, then run one scan cycle from 25 to 80°C at 1°C per minute.
5. **When the temperature has returned to approximately 25°C, set the pressure to zero, then remove the pressure handle and black caps (if capillary cell).**
6. Aspirate and discard the cleaning solution. Thoroughly rinse all areas that come into contact with corrosive chemicals. Do not let any solutions pool inside the access tube area.
7. Rinse the cells with a generous volume of high quality deionized water using the appropriate equipment for your cell design. See the next two sections and follow the flushing directions for your instrument.

CAUTION: Thoroughly rinse all areas that come into contact with corrosive chemicals. DO NOT let any solutions pool inside the access tube area.
Cylindrical Cell Design Flushing Equipment

After washing the cylindrical cell with formic acid, follow the instructions in this section to flush the cell.

1. Place the cylindrical cell cleaning adapter (shown in Figure 9) into the calorimeter's cells (as shown in Figure 10).

![Figure 9](image)

Figure 9 Cylindrical cell cleaning adapter and cross-section of cleaning flow.

![Figure 10](image)

Figure 10 Positioning the cylindrical cell flushing apparatus.

2. Place the inlet tubing in a large volume of water and attach the outlet tube to a vacuum pump trap flask. This allows you to flush large volumes of liquid through the cell.

3. If the formic acid rinse appears inadequate (as judged by noisy water/water baseline scans), follow the intense cleaning procedure as described later in this chapter.
Capillary Cell Design Flushing Equipment

After washing the capillary cell with formic acid, follow the instructions in this section to flush the cell.

1. Attach the Manosil silicone tubing to the access tubes for each cell in the calorimeter.

2. Connect one side to a large flask of water, and the other side to a vacuum pump trap flask as shown in the figure below. This allows a large volume of solution to be drawn through the calorimeter's cells.

3. If the formic acid rinse appears inadequate, (as judged by noisy water/water baseline scans), follow the intense cleaning procedure as described later in this chapter.

![Figure 11](image.png) Capillary cell cleaning apparatus for flushing large volumes.
Software

Several software programs are available for use with the Nano DSC. The table below outlines the usage for each one. For more details on these programs, see the online help.

Table 2: Nano DSC Analysis Software

<table>
<thead>
<tr>
<th>Program</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCRun</td>
<td>This program controls the operation of the Nano DSC and is used for data acquisition. The main components are:</td>
</tr>
<tr>
<td></td>
<td>• DSC control panel</td>
</tr>
<tr>
<td></td>
<td>• Main menu functions</td>
</tr>
<tr>
<td></td>
<td>• Operating modes and status</td>
</tr>
<tr>
<td>NanoAnalyze</td>
<td>Thermodynamic analysis of experimental data is conducted in this program. It allows you to calculate the partial molar and excess heat capacities of the biopolymer. Afterwards, the data can be fit to a series of models that are appropriate to the system being studied. The following features are present in this program:</td>
</tr>
<tr>
<td></td>
<td>• Viewing, exporting, and importing data files.</td>
</tr>
<tr>
<td></td>
<td>• Conversion of microwatt data into molar heat capacity. It requires a sample data file and a baseline data file for operation.</td>
</tr>
<tr>
<td></td>
<td>• The ability to fit molar heat capacity or excess heat capacity data to one of four models. All of the models assume that there are two-state or multi-state transitions in the data. Data can be exported from NanoAnalyze to Microsoft® Excel.</td>
</tr>
</tbody>
</table>
Maintaining the Nano DSC

Maintaining the Nano DSC consists of performing balance runs when baseline shifts indicate a need, purging the instrument, cleaning the filter, lubricating the o-ring, and thoroughly cleaning the cells. This section provides information on these procedures.

Balance and Residual

NOTE: Use of the residual scan feature will not affect your data in any way.

The balance and residual scan scans serve to flatten the baselines, allowing for easier visual interpretation especially in real time or when collecting data for presentation. Perfect flatness is not a strict requirement; when baseline scans are subtracted from sample scans, the baseline shifts cancel out. Users may find it convenient to renew the baseline and residual scans from time to time, as the baseline shifts over time. This will result in water baseline data that do not fall within +100 µwatt range.

The measuring unit of your Nano DSC contains two cells that are closely matched in mass and internal volume. These cells are attached to the calorimeter block via the access tubes. During the manufacture of your calorimeter, these access tubes were machined to match the thermal conductivity of the sample and reference cells. Since it is impossible to achieve a perfect match of the thermal paths for the two cells, an instrument baseline, or balance run, is performed. This balance run creates a baseline for the calorimeter, which yields a heat flow signal that is near zero when both cells contain solutions with the identical heat capacity.

The balance run will give you a satisfactory baseline. However, to further flatten the baseline across the entire temperature range, you can correct the instrument baseline by running a “residual” scan. A residual scan is generally used for cosmetic reasons only; the real sample heat capacity data is obtained by subtracting data from the baseline, not from individual scans. Use the same scan rate and temperature limits as the experiment.

The residual feature of this software is simply a process used to adjust the linearity of the instrument baseline to display a value near zero.

The procedure for balancing the cells and creating residual scan data are as follows:

1. Load the cells with degassed, deionized water. Be sure you have no bubbles.
2. Select Tools > Balance Cells from the DSCRun menu bar. The calorimeter performs a 0 to 130°C scan (both up and down).
3. Allow the cells to equilibrate.
4. Select Tools > Residual data base from the DSCRun menu bar (see the three figures below).
 - Set the attributes of the Residual data base dialog box as shown below. (Examples only. Rate and T-lower must match the intended future experiment; T-upper must equal or exceed the experiment final temperature.)
 - Rate: 1
 - T-lower: 0
 - T-upper: 130
5 Remove the previous residual values by highlighting each value on the residual data panel (Label box) and then clicking Remove (see the three figures below).

![Residual Baselines](image)

![Add Baseline](image)

NOTE: The items in the Label box must be removed before a new residual can be run.

NOTE: It is perfectly acceptable to run the Nano DSC with only a balance and no residual (that is, the residual values are zero (0) in the Label box), or a residual scan without re-balancing the instrument first.

6 Select Add (or Rescan) to begin. Again, the instrument will scan up and down from 0 to 130°C.

7 Wait for the scans to finish. Then select File > Save from the main menu to store the residual values. Your instrument is now balanced and ready for use.

A different scan rate other than 1°C/min requires a different residual scan to achieve a flat baseline. For example, if your application requires a 0.5°C/min scan rate, perform a residual scan (you do not need to run another balance scan) as described above, but change the Rate Attribute value from 1 to 0.5.
Purging the Nano DSC

The Nano DSC features a sealed, nitrogen-filled canister surrounding the measurement cells in order to ensure stable operation. If baselines become unstable, it may be necessary to contact TA Instruments for service. Check for stability by operating the Nano DSC near ambient temperature, with the cells filled with degassed water. Stirring should be switched off and the instrument allowed to settle. The peak-to-peak noise amplitude of the baseline signal should be approximately 0.3 µWatts over a period of 10 minutes (exclusive of any drift that may be occurring).

Important Note: The canister has been vacuum-purged and back-filled with dry nitrogen gas at the factory before shipment, and will only very rarely be required again in the field. Contact TA Instruments for service if the instrument does not maintain a stable signal as described above.

Cleaning O-Rings

In order to ensure a good seal for the pressure handle, you may need to occasionally remove the o-ring from the access flange with a pair of dull tweezers. Be very careful not to tear or puncture the o-ring or scratch the surface of the seating channel. Clean the o-ring groove and o-ring, then lubricate the o-ring with vacuum grease and reinstall it.

Cleaning the Instrument

Regular Cleaning

During normal operation it is recommended that you clean the Nano DSC sample and reference cells with a 50% formic acid solution between samples. Remove the sample then load the formic acid into both cells. Scan from 25 to 75 °C and back to 25 °C. After the cells have cooled to 25 °C, rinse each cell with 1 L of deionized water. See page 29 for details.

If, however, there is excessive noise in subsequent scans, or you suspect a residue or precipitate in the cells, follow the cleaning procedure below.

Thorough Cleaning

These procedures are used to more thoroughly clean the instrument if needed. Select the process that is appropriate to the suspected contaminant. Sodium hydroxide cleaning is always followed by a formic acid neutralization step.

All rinsing or flushing operations should be done with the cleaning devices described beginning on page 27. Caustic solutions should be loaded and removed with the appropriate syringe or micropipette.

Protein Deposits: Pepsin Solution

1. Prepare a solution containing 0.5 M NaCl, 0.1 M Acetic Acid and 1 mg/mL Pepsin.

2. Place this solution in the calorimeter for a minimum of three hours, preferably at 30°C. (Use fresh pepsin each time as it eats itself up in solution.)

3. Flush the cells with 1 to 2 L of deionized water after the solution has been in the calorimeter for three hours or more.
Mineral Deposits, Step A: NaOH Solution

1 Prepare a 4.0 M NaOH solution.

2 Place this solution in the calorimeter and run a scan from 25 to 90°C at 2°C/min. Interrupt the scan at 90°C and let it stand at this temperature overnight.

3 Flush the cells with 1 to 2 L of deionized water after the NaOH solution has been in the calorimeter over night.

Step B: Formic Acid Solution

1 Prepare a 50% formic acid solution.

2 Place the solution in the calorimeter and run a scan from 25 to 65°C at 2°C/min. Interrupt the scan at 75°C and let it stand at this temperature for 20 minutes.

3 Flush the cells with 1 to 2 L of deionized water after the 20 minutes have passed.

Grease or Oil

If you suspect grease or oil in the cells, follow these steps.

1 Place HPLC grade tetrahydrofuran in the calorimeter and run a scan from 25 to 50°C at 2°C/min.

2 Interrupt the scan at 50°C and let it stand at this temperature for 20 min.

Soapy Water Flush

1 Exit from the DSCRun software. (This must be done whenever you pass large volumes of solutions through the Nano DSC.)

2 Flush or aspirate 100 mL of soapy water (for example, SDS) through the cells.

Final Flush

Flush or aspirate 1 to 2L of deionized water through each cell.
Troubleshooting the Instrument

The following table provides tips on how to solve various problems that you may encounter when using the Nano DSC. For anything not solved below, please call TA Instruments for service.

Table 3: Common Troubleshooting

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Problem</th>
<th>Action/Remedy</th>
</tr>
</thead>
</table>
| Random sharp spikes in scan traces. | • Air bubbles in sample.
• Air bubbles in Nano DSC. | • Degas sample.
• Fill cells correctly so no air pockets develop. |
| Noisy scans. | • Contamination from previous sample.
• Precipitation of sample.
• Sample contamination.
• Canister may need to be evacuated. | • Clean cells thoroughly.
• Clean cells with 4 M NaOH solution. Rinse thoroughly. Avoid running a sample that precipitates or is a suspension.
• Check sample for impurities. Check syringe and needle for contaminants.
• This service is rarely needed. Consult with TA Instruments representative before proceeding. |
| Scans have a sharp jagged rise between 90 and 100°C. | Sample is boiling out of cells. | Cells may not be pressurized. Check for possible causes:
• Pressure handle not installed
• Manostat not adjusted to elevated pressure
• Missing, torn, or contaminated pressure handle o-ring |
| Only the last scan is displayed during the run. | View option setting. | Select All scans under the View option on the toolbar. |
| Water-water scans do not fall within the ±100 µW range. | • Balance has degraded over time.
• The cells are unevenly filled. | • Rebalance the Nano DSC. Run a residual.
• Refill the Nano DSC carefully with the same amount of solution in each cell. |
| Consecutive baselines shift by more than 3 µW. | • Cells require cleaning cure.
• Canister may need to be evacuated.
• Pressure leak. | • Select and perform appropriate cleaning procedure.
• This service is rarely needed. Consult with TA Instruments representative before proceeding.
• Check the pressure handle and o-ring. |
| Nano DSC does not hold constant pressure. | • O-ring is dry, contaminated, or damaged.
• Pressure handle is not screwed on tightly. | • Carefully remove the o-ring (do not use sharp metal tools). Inspect, wipe clean, and lubricate the access o-ring. Replace if necessary.
• Tighten the pressure handle. |
Table 3: Common Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Problem</th>
<th>Action/Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano DSC does not pressurize</td>
<td>• No power to instrument (Green light on front panel should be illuminated)</td>
<td>• Check power cord, surge suppressor strip, and electrical service.</td>
</tr>
<tr>
<td></td>
<td>• Pressure motor piston not in initial position</td>
<td>• Remove pressure handle and reset by clicking on depressurize control (“down” arrow)</td>
</tr>
</tbody>
</table>
Appendix: A

Pressure Perturbation Experiments

The Nano DSC is capable of running experiments in which the applied atmospheric pressure is modulated in order to perform compressibility studies on samples.

In the Experiment Editor tab, select Function under Pressure Parameters. This example shows the pressure jump function which creates a rapid stepwise change in pressure.

Click Add To Experiment Method or Add Series. If clicking Add Series, select an appropriate number of experiment steps to add. If the experiment type is a temperature scan, select whether the scans will alternate between heating and cooling steps.
The pressure steps will coincide with either time-based or temperature-based intervals. Select the desired triggering type, and define the minimum and maximum pressure values as well as the time or temperature interval.

The experiment will now contain the requested number of steps.

As the experiment progresses, the Data tab shows the Pressure and Heat Rate signal histories.
The zooming function can be used to examine either data set in detail. Click and drag the mouse right button to move the cursor over the region of interest, then release the button to see the newly scaled chart.

The **Heat Rate** and **Pressure** signals can also be observed in the **Monitor** tab.
Index

A
access flange 25
access tube 22, 29

B
balance 31
balancing the cells 31
baseline shifts 31
biopolymer 21
biopolymer solutions
 preparation 20
buffer
 adjusting pH 19
 criteria for use 19
 degassing 20
buffer dialysate 21
buffer solution
 adjusting pH 19
 preparing 19

C
capillary cell
 checking for bubbles 25
 emptying 27
 flushing 29
 pressurization 25
capillary cells
 filling 22
cautions 4
cell
 filling 24
 pressurization 25
cells
balancing 31
emptying 27
cleaning
 regular 33
 thorough 33
cleaning adapter 28
cleaning instrument 27
creating residual scan data 31
cylindrical cell
 checking for bubbles 25
 emptying 27
 flushing 28
 pressurization 25
cylindrical cells
 filling 21
D
data
 analyzing 30
degassing solutions 20
deionized water 34
dialyzed protein 21
dilute biopolymer solutions
 preparing 20
DSCRun 25, 30
E
electrical safety 5
electromagnetic compatibility standards 4
experiments
 filling capillary cells 22
 filling cylindrical cells 21
 preparing pipette tips 23
 running baseline scans 21
 running sample scans 21
 selecting solutions 21
F
filling cells 21, 22
flushing cells 28
formic acid solution 34

G
gas bubbles 20
grease 34

I
instrument
 cleaning 27
 lifting 5
 maintenance 31
 regular cleaning 33
 thorough cleaning 33
 troubleshooting 35
instrument symbols 5

L
license agreement 3

M
maintaining instrument 31
manostat 20
manostat pressure 26
micropipette 23

N
Nano DSC
 applications 10
 choosing a location 14
 electrical connections 15
 gas requirements 15
 inspecting 13
 installing 13
 models covered in this guide 9
options and accessories 11
overview 9
purging 33
shutting down 17
starting 16
system components 11
technical specifications 12
unpacking
 repacking 13
NanoAnalyze 30
NaOH solution 34
noisy water/water baseline scans 29
notes 4
O
oil 34
o-rings
 replacing 33
P
patents 3
pepsin 33
pipette tips 23
preparation
 biopolymer solutions 20
pressure handle
 replacing o-ring 33
R
Regulatory Compliance 4
regulatory compliance 4
residual 31
runs
 balance 31
 residual 31
S
safety 5
 electrical 5
 instrument symbols 5
Safety Standards 4
safety standards 4
scans
 creating 31
silicone rubber tubing 22
silicone tubing 29
software programs 30
solutions
 biopolymer 20
 degassing 20
 selecting 21

T
TA Instruments offices 3
tetrahydrofuran 34
trademarks 3
troubleshooting 35

W
warnings 4