Characterization of a Novel DNA Primase from the Salmonella typhimurium Bacteriophage SP6†

Timothy Y. Tseng, David N. Frick, and Charles C. Richardson*
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
Received September 17, 1999; Revised Manuscript Received November 9, 1999

ABSTRACT: The gene for the DNA primase encoded by Salmonella typhimurium bacteriophage SP6 has been cloned and expressed in Escherichia coli and its 74-kDa protein product purified to homogeneity. The SP6 primase is a DNA-dependent RNA polymerase that synthesizes short oligoribonucleotides containing each of the four canonical ribonucleotides. GTP and CTP are both required for the initiation of oligoribonucleotide synthesis. In reactions containing only GTP and CTP, SP6 primase incorporates GTP at the 5′-end of oligoribonucleotides and CMP at the second position. On synthetic DNA templates, pppGpC dinucleotides are synthesized most rapidly in the presence of the sequence 5′-GCA-3′. This trinucleotide sequence, containing a cryptic dA at the 3′-end, differs from other known bacterial and phage primase recognition sites. SP6 primase shares some properties with the well-characterized E. coli bacteriophage T7 primase. The T7 DNA polymerase can use oligoribonucleotides synthesized by SP6 primase as primers for DNA synthesis. However, oligoribonucleotide synthesis by SP6 primase is not stimulated by either the E. coli- or the T7-encoded ssDNA binding protein. An amino acid sequence alignment of the SP6 and T7 primases, which share only 22.4% amino acid identity, indicates amino acids likely critical for oligoribonucleotide synthesis as well as a putative Cys3His zinc finger motif that may be involved in DNA binding.

DNA polymerases cannot initiate the de novo synthesis of both new strands (1). All known DNA polymerases require a priming mechanism, the most common being the use of short oligoribonucleotides annealed to ssDNA.1 DNA polymerases can efficiently add deoxyribonucleotides to the 3′-ends of oligoribonucleotides that are themselves synthesized in a 5′ to 3′ template-dependent manner by a class of enzymes called DNA primases (2). Whereas other types of polymerases will read any sequence as a template, primases are unique in that they synthesize oligoribonucleotides primarly at DNA sequences designated as primase recognition sites. The well-characterized bacterial and phage primases each recognize a unique trinucleotide DNA sequence. For example, bacteriophage T7 primase synthesizes oligoribonucleotides at primase recognition sites that begin with the sequence 5′-GTC-3′ (3, 4). Oligonucleotide synthesis begins opposite the dT in the recognition site, and all primers start with the dinucleotide pppApC (5, 6). The 3′-dC in the recognition site is thus designated as “cryptic” because although essential, its complement is not part of the primer (3, 7). Other primases synthesize oligoribonucleotides at different trinucleotide sequences also containing cryptic nucleotides at the 3′-ends. For example, the Escherichia coli DnaG primase recognizes the trinucleotide 5′-CTG-3′ (8), and the T4 gp61 primase recognizes 5′-G(T/C)T-3′ (9). A third class of enzymes called DNA helicases is equally essential for the replication of duplex DNA. Helicases produce the ssDNA templates required by primases and polymerases by unwinding the duplex DNA at the replication fork. Generally, replicative DNA helicases are hexameric proteins that separate the double helix through unidirectional translocation along DNA using energy derived from the hydrolysis of NTPs. The E. coli DnaB protein (10, 11) is the prototype of this class of helicases.

In the cell, polymerase, primase, and helicase proteins must work together to rapidly synthesize both strands of DNA. The resulting complex macromolecular machine is often referred to as the replisome. The replisome is composed of nucleic acids and multiple proteins. In E. coli, for example, the replisome is composed of over 20 different proteins (1). To start DNA synthesis on either strand, the primase and polymerase must function together. On the leading strand, DNA is synthesized in a continuous manner requiring only a single instance of priming. The replication of the antiparallel lagging strand, on the other hand, must frequently be reintiated as the DNA is progressively unwound by the helicase. The resulting discontinuous synthesis gives rise to small fragments of DNA (Okazaki fragments). Primases are also associated functionally and physically with DNA helicases. In most organisms, primase and helicase functions are encoded by separate genes and translated into distinct proteins. When primase activity is measured in vitro, the most efficient oligoribonucleotide synthesis occurs only when the

1 This work was supported by United States Public Health Service Grant AI-06045 and by American Cancer Society Grant NP-1Z to C.C.R. D.N.F. was supported by American Cancer Society Postdoctoral Fellowship PF-4452.
† To whom correspondence should be addressed at the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115. Tel.: 617-432-3130; Fax: 617-432-3362; E-mail: ccr@hms.harvard.edu.
1 Abbreviations: DTT, dithiothreitol; (d)NTP(s), (deoxy)nucleoside triphosphate(s); dNMP(s), (deoxy)nucleoside monophosphate(s); IPTG, isopropyl β-D-thiogalactopyranoside; nt, nucleotide(s); LB, Luria Bertani medium; PCR, polymerase chain reaction; ssDNA, single-stranded DNA.
helicase is added. This stimulation results from the physical interaction of the two proteins, and such an interaction has been demonstrated for the E. coli DnaG primase and the E. coli DnaB helicase (12, 13). Likewise in phage T4, the gp41 protein (helicase) combines in a 6:1 complex with the T4 gp61 protein (primase) when bound to DNA and ATP (14–16). The physical coupling of primase to helicase allows the primase to use the unidirectional translocation of the helicase to locate primase recognition sites in DNA (17).

The bacteriophages have long provided attractive models for studying DNA replication because of the relative ease with which one can attain large amounts of phage enzymes. The replisome of phage T7, for example, can be reconstructed in vitro from only four proteins: the T7 gene 5 DNA polymerase; its processivity factor E. coli thioredoxin; the T7 gene 2.5 ssDNA binding protein; and the T7 gene 4 primase/helicase (18). The T7 phage has made efficient use of its limited genome by combining the helicase and primase functions into the product of a single gene. This one gene, T7 gene 4, encodes two co-linear proteins—a 63-kDa form possessing both primase and helicase activity, and a 56-kDa form possessing only helicase function—that differ only in their translational start sites (19–21). An in-frame translational start site downstream from the start site of the large form encodes the shorter form (19). The N-terminal 63 amino acid residues not present in the 56-kDa protein contain a Cys$_2$Zn$^2+$ zinc finger essential for primer synthesis (22–24). Since the 63-kDa gene 4 protein contains both helicase and primase activities, the 56-kDa gene 4 protein is not necessary for phage growth (25). It has been proposed that the T7 gene 4 evolved following a fusion of two ancestral genes that were the common ancestors of the current bacterial and bacteriophage primase and helicase genes (26).

Only two other proteins are known that combine primase and helicase activities into a single polypeptide; these are encoded by bacteriophages T3 and P4. T3 is a very close relative to T7, and expression of the T3 helicase/primase from a plasmid vector in E. coli allows the growth of T7 phage lacking gene 4. Moreover, a chimeric T3/T7 gene 4 protein is a functional primase in vivo and synthesizes oligoribonucleotide at the same recognition sequence as the T7 primase (23). This genetic and biochemical evidence indicates that the T3 gene 4 protein can substitute for its T7 homologue, a result that is not surprising considering the extremely high homology (80.8% identity) between the T7 and T3 gene 4 proteins. The 84-kDa α protein of P4, which is 18.8% identical to T7 gene 4 protein, possesses primase and helicase functions and can also recognize the P4 origin of replication (27).

Preliminary sequence analysis of the genome of the Salmonella typhimurium bacteriophage SP6 has uncovered a fourth potential primase/helicase protein (GenBank accession no. AF159357) (28). A 74-kDa SP6 gene product, which we have designated gp74, possesses an amino acid sequence that is 22.4% identical to that of the T7 gene 4 protein. The SP6 phage, a morphologically similar, yet distant relative to T7, and expression of the T3 helicase/primase genes (29–31). The putative 74-kDa SP6 primase/helicase contains the six DnaG-like primase and five DnaB-like helicase amino acid signature sequences that are widely conserved among such proteins (26). However, E. coli strains carrying the SP6 gene do not permit the growth of T7 phage lacking gene 4. These observations raise the intriguing possibility that SP6 gp74 may be both a helicase and a primase protein, and yet, because it is distantly related to the T7 gene 4 protein, it cannot functionally substitute for the T7 gene 4 protein. To examine the biochemical similarities between these two proteins, we have cloned the SP6 primase gene, overexpressed SP6 gp74 in E. coli, and characterized the purified SP6 protein. An analysis of substrate and template requirements reveals the SP6 gp74 is a unique DNA primase and not simply a homologue of the T7 gene 4 protein.

EXPERIMENTAL PROCEDURES

DNA, Nucleotides, Enzymes, and Strains. Bacteriophage M13mp18 and ΦX174 ssDNA were obtained from New England Biolabs. Synthetic oligonucleotides were purchased from Integrated DNA Technologies and the Biopolymers Laboratory of Harvard Medical School. T7 gene 2.5 protein was obtained from James M. Stattel (Harvard Medical School), and E. coli ssDNA binding protein was purchased from Amersham Pharmacia Biotech. Stanley Tabor (Harvard Medical School) provided purified T7 DNA polymerase and the 63-kDa T7 gene 4 protein. In the 63-kDa form of the T7 gene 4 protein used in these experiments, glycine was substituted for methionine-64 to prevent the translation of the 56-kDa protein. The enzymatic activities of the purified 63-kDa M64G gene 4 protein are indistinguishable from those of the wild-type 63-kDa protein (25). T4 DNA ligase, T4 polynucleotide kinase, and [32P]NTPs were purchased from Amersham Pharmacia Biotech. T. coli NovaBlue and HMS174(DE3) cells were obtained from Novagen.

Cloning of the SP6 gp74 Gene. Two oligonucleotide primers, SP6NCO (5′-CGCGCG GCCAT GGC TAATT ACAA TATTC CGTGC CCTGC C-3′) and BAMHI-2 (5′-GGCG CGGAT CCTCA TCCAT TAAAC TCTCG TGT GT TCTCT T-3′), were used to amplify the gene encoding SP6 gp74 from phage SP6 DNA in reactions containing Deep Vent Polymerase (New England Biolabs) and to attach NeoI and BamHI restriction sites (underlined) to the 5′- and 3′-ends of the PCR gene products. The 1000 bp product was purified from an agarose gel using the GeneClean kit (Bio 101), digested with NeoI and BamHI, purified, and ligated into the NeoI and BamHI sites of a similarly prepared pET24d vector plasmid (Novagen) to create plasmid pETgp74. The ligation reactions were used to transform Novablu3 competent cells (Novagen). Transformants selected on LB–kanamycin plates were grown in 50 mL of LB medium containing 100 μM kanamycin. Plasmid DNA was recovered and used to transform E. coli H85174(DE3) cells. Induction of H85174(DE3) cells carrying the plasmid pETgp74 with isopropyl-β-D-thiogalactopyranoside (IPTG) resulted in the expression of a 74-kDa protein. Plasmid pETgp74 was purified from cells after induction using the Rapid Pure Midiprep Automated Fluorescence Sequencing kit (Bio 101). To confirm that no mutations were present in the expressed gene, both DNA strands of pETgp74 were sequenced using the ThermoSequenase cycle sequencing kit (Amersham) with the following primers: 5′-CTACT CGGAC GTCAT AAA-3′, 5′-CTAGA TGTCC AAACT TGA-3′, 5′-GACTT GC-3′.

2 E. C. Kornfeld and C. C. Richardson, unpublished data.
3 J. Rush and C. C. Richardson, unpublished data.
An OD HMS174(DE3) containing plasmid pETgp74 was inoculated after overnight incubation at 37°C. Bacteriophage SP6 DNA Primase.

Reactions (10 μL) contained 40 mM Tris-HCl, pH 7.5, 50 mM potassium glutamate, 10 mM MgCl₂, 10 mM DTT, 50 μg/mL bovine serum albumin, 0.3 mM each of GTP, ATP, UTP, and CTP, 25 μg/mL M13 or 100 μg/mL ΦX174 ssDNA, and varying concentrations of SP6 gp74. [α-32P]-NTPs or [γ-32P]GTP were added as indicated. After incubation at 37°C for 60 min, the reactions were stopped by the addition of 5 μL of stop solution (98% formamide, 10 mM EDTA, pH 8.0, 0.1% xylene cyanol FF, and 0.1% bromophenol blue). The products of the reactions were separated by electrophoresis through a 25% polyacrylamide gel containing 3 M urea, and visualized by autoradiography. To identify the first and second nucleotides of the reaction products, standard oligoribonucleotide synthesis reactions were heated in boiling water for 5 min prior to the addition of stop solution and subjected to dephosphorylation by bacterial alkaline phosphatase (Amersham). The dephosphorylation reaction contained 50 mM Tris-HCl, pH 9.0, and 1 mM MgCl₂, and was initiated by the addition of 0.01 unit/μL bacterial alkaline phosphatase. The dephosphorylated oligoribonucleotides were separated on an 8% polyacrylamide gel containing 6 M urea. Products were visualized by autoradiography and their amounts measured with a Fuji BAS-1000 phosphorimage analyzer. Assays on synthetic templates used oligonucleotides of the sequence 5'-TCTGTGC-3'.

RNA-Primed DNA Synthesis Assay. The ability of SP6 gp74 to prime DNA synthesis by the T7 DNA polymerase was measured using M13 ssDNA templates as described (33). Reactions (20 μL) contained 40 mM Tris-HCl, pH 7.5, 50 mM potassium glutamate, 10 mM MgCl₂, 10 mM DTT, 50 μg/mL bovine serum albumin, 0.3 mM each of GTP, ATP, UTP, CTP, dGTP, dATP, dTTP, and [α-32P]dCTP (70 Ci/mol), 12.5 μg/mL M13 ssDNA, 100 mM T7 DNA polymerase, and varying concentrations of SP6 gp74. The reactions were incubated at 37°C for 20 min, stopped by the addition of 200 mM EDTA, pH 8.0, to a final concentration of 25 mM, and spotted onto Whatman DE81 filters. The filters were then washed 3 times with 0.3 M ammonium formate and once with 95% ethanol to remove unphosphorylated nucleotides. The amount of [32P]dDNA retained by the filters was measured with a Beckman LS 6500 scintillation counter.

NTP Hydrolysis Assays. NTP hydrolysis by SP6 gp74 was measured using both radioactive (34) and colorimetric assays (35). Reactions (50 μL) contained 50 mM Tris-HCl, pH 7.5, 40 mM potassium glutamate, 10 mM MgCl₂, 10 mM DTT, equal concentrations of selected ribo- or deoxyribo-NTPs totaling 2.0 mM for all NTPs in solution, 135 nM SP6 gp74, and one of the following types of DNA: M13 ssDNA (17 μg/mL), ΦX174 ssDNA (67 μg/mL), a 30-base single-stranded synthetic oligonucleotide (5'-GGCGCAT CATGTCGTT AACCTT AAAGT TATCC-3'), 8.0 μM), salmon sperm DNA (40 μg/mL), or λ phage DNA (2 μg/mL) digested with the HindIII restriction enzyme. In the radioactive assay, [α-32P]NTPs (5000 Ci/mmol) were incubated at 30°C for 5 min and stopped by the addition of 150 mM EDTA to a final concentration of 15 mM, and 1 μL of each reaction was spotted on a Baker-flex (Cellulose PEI-F) thin-layer chromatography sheet. After drying, the sheet was pre-run in water, developed in a solution containing 1 M formic acid and 0.8 M lithium chloride, dried, and subjected to autoradiography. For the colorimetric assay, free orthophos-
phate (P) released from NTP was determined using the method of Ames and Dubin (35). Reactions were incubated at 37 °C for 15 min, stopped with 50 µL of a mixture of Norit (16%) and perchloric acid (1.4%), and centrifuged. Water (250 µL) and 700 µL of a mixture containing ascorbic acid (1.4%) and ammonium molybdate (0.36%) in 1 N H$_2$SO$_4$ were added to 50 µL of each reaction. The resulting solutions were incubated at 42 °C for 20 min to develop a blue color. In this assay, 50 nmol of orthophosphate (P) yielded an A_{580} of 1.0.

Helicase Assay. The ability of SP6 gp74 to unwind DNA was measured using a substrate consisting of circular M13 ssDNA and an annealed oligonucleotide possessing an 11-nucleotide 3′-noncomplementary tail (28, 36). To prepare this substrate, a 37-nucleotide oligomer (5′-TCACG ÂCGTT GTAAAA ACGAC GGCCA GTTTT TTTTT TT-3′) was radiolabeled at its 3′-end using T4 polynucleotide kinase. The kinase reaction (14 µL) contained 4 pmol of the oligonucleotide in 41 mM Tris-HCl, pH 7.5, 10 mM MgCl$_2$, 5 mM DTT, 143 mM NaCl, 0.36 µg/µL bovine serum albumin, 0.5 µM [γ-³²P]ATP (6000 Ci/mmol), and 1 unit/µL T4 polynucleotide kinase and was performed for 15 min at 37 °C. The reaction mixture was heated to 70 °C for 15 min to inactivate the kinase.

M13 ssDNA (5 µg) was added to the [γ-³²P]oligonucleotide in 94 mM NaCl and 8 mM MgCl$_2$. The annealing reaction was heated to 65 °C and cooled to room temperature over the course of 60 min. The annealed substrate was extracted with an equal volume of phenol/chloroform/isoamyl alcohol (24:24:1) and purified from water (250 µL) by precipitation with ethanol (24:24:1) and purified from water (250 µL) by precipitation with ethanol.

The helicase reactions (10 µL) contained 40 mM Tris-HCl, pH 7.5, 10 mM MgCl$_2$, 10 mM DTT, 50 µg/mL bovine serum albumin, equal concentrations of selected NTPS (GTP, ATP, UTP, CTP) or dNTPS (dGTP, dATP, dUTP, dCTP) totaling 2 mM, 1 µL of the helicase substrate, and varying concentrations of the SP6 gp74. The reactions were incubated at 30 °C and stopped by the addition of 0.5 M EDTA to a final concentration of 45 mM. The products were separated on a 10% polyacrylamide Tris-HCl Ready Gel (Bio-Rad) with 0.5× TBE (44.5 mM Tris, 44.5 mM boric acid, 1 mM EDTA) and visualized by autoradiography or phosphorimage analysis.

RESULTS

Cloning and Sequencing of the SP6 Primase Gene. Preliminary analysis of the SP6 genome revealed the presence of an open reading frame similar to the T7 gene 4 helicase/primase protein. This putative helicase/primase gene encodes a 661 amino acid protein with a mass of 74 kDa (gp74). The amino acid sequence of SP6 gp74 is 22.4% identical to the T7 gene 4 primase/helicase protein (GeneStream align at http://vega.igh.cnrs.fr/bin/align-guess.cgi). The open reading frame of interest was amplified in a polymerase chain reaction using oligonucleotide primers containing restriction sites for the enzymes NcoI and BamHI. The PCR product was purified, digested with the NcoI and BamHI restriction enzymes, and ligated into similarly treated pET24d vector to produce a plasmid (pETgp74) that expressed a 74-kDa protein. To check for mutations in the expressed protein, plasmid pETgp74 was isolated from HMS174(DE3) cells and sequenced. The sequence of the recombinant putative SP6 helicase/primase gene was identical to the genomic sequence (GenBank accession no. AF159357).

Expression and Purification of SP6 gp74. When induced with IPTG, E. coli HMS174(DE3) cells containing the plasmid pETgp74 expressed high levels of a protein with an apparent molecular weight of approximately 74 000 (Figure 1A, lane 2). To examine if the expressed protein originated from the first ATG codon in the open reading frame or a downstream start codon, a second plasmid was constructed. The second plasmid, pETgp74frameshift, was identical to the pETgp74 plasmid except for a 4-nt (ATGG) insert before the start site of the SP6 gene that placed the SP6 gene out of frame with the T7 promoter. Indeed, cells containing pETgp74frameshift did not express the 74-kDa protein (Figure 1A, lane 3), suggesting that in cells containing the pETgp74 plasmid, gp74 is synthesized from the translational start site identified by preliminary sequencing. In contrast to T7 gene 4, which encodes two proteins from a single open reading frame containing plasmid pETgp74 (Figure 1B, lane 3), SP6 gene apparently encodes a single polypeptide. The amount of SP6 gp74 expressed by this system was 10-fold greater than that of similar pET24 constructs expressing the 63-kDa gene 4 primase. Most of the gp74 protein was soluble after lysis of the cells. Such a high level of expression relative to the T7 gene 4 protein suggests that the SP6 protein is either less toxic or more stable when expressed in E. coli than is the T7 primase/helicase. The purification of SP6 gp74 was followed by SDS–polyacrylamide gel electrophoresis prior to the discovery of its activity. SP6 gp74 was the predominant protein in extracts of induced cultures of HMS174(DE3) containing plasmid pETgp74 (Figure 1B, lane 1). SP6 gp74 precipitated with nucleic acids in the presence of polyethylene glycol (Figure 1B, lane 2), suggesting that the protein binds DNA or RNA. The protein is more than 90% pure after separation from nucleic acids using a DEAE-Sephadex Fast Flow column (Figure 1B, lane 3). Phosphocellulose and Mono Q columns were used to remove remaining contaminants. Approximately 20% of the amount of gp74 present in the crude extract was recovered after chromatography on phosphocellulose. The described puri-

\footnote{D. N. Frick, S. Tabor, and C. C. Richardson, unpublished data.}
Bacteriophage SP6 DNA Primase

Oligoribonucleotide synthesis reactions containing GTP, ATP, UTP, [\(\alpha\)-\(^{32}\)P]-CTP, and M13 ssDNA were performed with no protein (lane 1), 16 \(\mu\)g/mL crude extract from HMS174(DE3) cells containing pET24d (lane 2), 16 \(\mu\)g/mL SP6 gp74 Fraction II (lane 3), 354 \(\mu\)g/mL Fraction I (lane 4), 215 nM SP6 gp74 Fraction V (lane 5), and 500 nM 63-kDa T7 primase/helicase (lane 6). The products of the reactions were separated on a 25% polyacrylamide gel in 3 M urea and detected by autoradiography. The bands at the top of the gel are likely mRNA. Primase-synthesized oligoribonucleotides migrate near the bottom of the gel. The distance from the wells at the top of the gel to the \([\alpha\)-\(^{32}\)P]CTP at the bottom of the gel is 27 cm.

Figure 2: Oligoribonucleotide synthesis by SP6 gp74. Oligoribonucleotide synthesis reactions containing GTP, ATP, UTP, [\(\alpha\)-\(^{32}\)P]-CTP, and M13 ssDNA were performed with no protein (lane 1), 16 \(\mu\)g/mL crude extract from HMS174(DE3) cells not expressing gp74 (lane 2), SP6 gp74 Fraction II (lane 3), SP6 gp74 Fraction I (lane 4), SP6 gp74 Fraction V (lane 5), and T7 primase (lane 6). All reactions contained M13 ssDNA, GTP, ATP, UTP, [\(\alpha\)-\(^{32}\)P]-CTP, and magnesium. In the presence of M13 ssDNA, purified gp74 (lane 5), as well as the crude extract of cells expressing SP6 gp74 (lane 4), catalyzed the synthesis of short oligoribonucleotides similar in size to those produced by the purified T7 gene 4 primase (lane 6). Extracts of cells containing the pET24d vector alone did not (lane 2). The amount of oligoribonucleotide synthesis catalyzed by purified SP6 gp74 (Fraction V) was proportional to both reaction time and enzyme concentration and was dependent upon the addition of ssDNA. The synthesis of a variety of oligoribonucleotides was detected at 20 min, with the amount of oligoribonucleotide synthesis increasing up to 120 min, indicating that gp74 acts catalytically. Other ssDNA templates also support oligoribonucleotide synthesis. With \(\Phi\)X174 ssDNA, oligoribonucleotide synthesis could be observed with as little as 3 nM SP6 gp74, and synthesis was proportional to enzyme concentration.

As with other known RNA polymerases, the oligoribonucleotide synthesis catalyzed by SP6 gp74 requires magnesium, and the optimal pH is approximately 7.5. The addition of 50–100 mM potassium glutamate, which enhances the primase activity of the T7 gene 4 protein (38), increased the rate of oligoribonucleotide synthesis by SP6 gp74 approximately 10%. The presence or absence of the reducing agent DTT did not affect the activity of the SP6 enzyme.

Because gp74 was purified from \(E.\ coli\) bacteria using a T7 expression system, there was the potential for contamination with both the \(E.\ coli\) and T7 RNA polymerases. T7 RNA polymerase was likely separated from gp74 during purification. In contrast to gp74, which elutes from DEAE-Sepharose at a relatively high salt concentration of 300 mM NaCl, T7 RNA polymerase does not bind to DEAE resins at this ionic strength (39). None of the subunits of the \(E.\ coli\) RNA polymerase holoenzyme (36.5 kDa, 151 kDa, and 156 kDa) were observed in the final fractions of the purification. To ensure that a small amount of \(E.\ coli\) RNA polymerase was not responsible for the oligoribonucleotide synthesis observed in the SP6 gp74 preparation, RNA-primed DNA synthesis assays (see below) were performed with rifampicin, an antibiotic known to selectively inhibit \(E.\ coli\) RNA polymerase, with 50% inhibition at a concentration of 0.01 \(\mu\)g/mL rifampicin (40). RNA-primed DNA synthesis reactions with SP6 gp74 or the 63-kDa T7 gene 4 protein were performed in the presence of 10 \(\mu\)g/mL and 100 \(\mu\)g/mL rifampicin. Neither gp74 nor T7 gene 4 protein was inhibited. The analysis of the reaction products (Figure 2) also provides strong support that the purified gp74 was not contaminated with other DNA-dependent RNA polymerases. Crude extracts of cells containing either pETgp74 or pET24d catalyzed the synthesis of long RNA products that did not enter the gel matrix, while purified gp74 did not. Such products are likely RNAs synthesized by the T7 or \(E.\ coli\) RNA polymerases. The synthesis of such long RNA products is not catalyzed by purified gp74, indicating that gp74 was separated from contaminating RNA polymerases.

SP6 gp74 Primes DNA Synthesis. In vivo, primases catalyze the synthesis of the oligoribonucleotides used by protein (lane 1), a crude extract from HMS174(DE3) cells not expressing gp74 (lane 2), SP6 gp74 Fraction II (lane 3), SP6 gp74 Fraction I (lane 4), SP6 gp74 Fraction V (lane 5), and T7 primase (lane 6). All reactions contained M13 ssDNA, GTP, ATP, UTP, [\(\alpha\)-\(^{32}\)P]-CTP, and magnesium. In the presence of M13 ssDNA, purified gp74 (lane 5), as well as the crude extract of cells expressing SP6 gp74 (lane 4), catalyzed the synthesis of short oligoribonucleotides similar in size to those produced by the purified T7 gene 4 primase (lane 6). Extracts of cells containing the pET24d vector alone did not (lane 2). The amount of oligoribonucleotide synthesis catalyzed by purified SP6 gp74 (Fraction V) was proportional to both reaction time and enzyme concentration and was dependent upon the addition of ssDNA. The synthesis of a variety of oligoribonucleotides was detected at 20 min, with the amount of oligoribonucleotide synthesis increasing up to 120 min, indicating that gp74 acts catalytically. Other ssDNA templates also support oligoribonucleotide synthesis. With \(\Phi\)X174 ssDNA, oligoribonucleotide synthesis could be observed with as little as 3 nM SP6 gp74, and synthesis was proportional to enzyme concentration.

As with other known RNA polymerases, the oligoribonucleotide synthesis catalyzed by SP6 gp74 requires magnesium, and the optimal pH is approximately 7.5. The addition of 50–100 mM potassium glutamate, which enhances the primase activity of the T7 gene 4 protein (38), increased the rate of oligoribonucleotide synthesis by SP6 gp74 approximately 10%. The presence or absence of the reducing agent DTT did not affect the activity of the SP6 enzyme.

Because gp74 was purified from \(E.\ coli\) bacteria using a T7 expression system, there was the potential for contamination with both the \(E.\ coli\) and T7 RNA polymerases. T7 RNA polymerase was likely separated from gp74 during purification. In contrast to gp74, which elutes from DEAE-Sepharose at a relatively high salt concentration of 300 mM NaCl, T7 RNA polymerase does not bind to DEAE resins at this ionic strength (39). None of the subunits of the \(E.\ coli\) RNA polymerase holoenzyme (36.5 kDa, 151 kDa, and 156 kDa) were observed in the final fractions of the purification. To ensure that a small amount of \(E.\ coli\) RNA polymerase was not responsible for the oligoribonucleotide synthesis observed in the SP6 gp74 preparation, RNA-primed DNA synthesis assays (see below) were performed with rifampicin, an antibiotic known to selectively inhibit \(E.\ coli\) RNA polymerase, with 50% inhibition at a concentration of 0.01 \(\mu\)g/mL rifampicin (40). RNA-primed DNA synthesis reactions with SP6 gp74 or the 63-kDa T7 gene 4 protein were performed in the presence of 10 \(\mu\)g/mL and 100 \(\mu\)g/mL rifampicin. Neither gp74 nor T7 gene 4 protein was inhibited. The analysis of the reaction products (Figure 2) also provides strong support that the purified gp74 was not contaminated with other DNA-dependent RNA polymerases. Crude extracts of cells containing either pETgp74 or pET24d catalyzed the synthesis of long RNA products that did not enter the gel matrix, while purified gp74 did not. Such products are likely RNAs synthesized by the T7 or \(E.\ coli\) RNA polymerases. The synthesis of such long RNA products is not catalyzed by purified gp74, indicating that gp74 was separated from contaminating RNA polymerases.

SP6 gp74 Primes DNA Synthesis. In vivo, primases catalyze the synthesis of the oligoribonucleotides used by
DNA polymerases to prime DNA replication. To test for such an activity with purified SP6 gp74, RNA-primed DNA synthesis reactions were performed in which the amount of radiolabeled nucleotides incorporated into DNA by a DNA polymerase was measured in the presence and absence of a DNA primer. Because SP6 DNA polymerase was unavailable for this study, T7 DNA polymerase was used instead. The experiment in Figure 3A shows the amount of DNA synthesis in reactions containing 34–270 nM SP6 gp74. T7 DNA polymerase was present in all reactions at a concentration of 100 nM. The initial rate of DNA synthesis increased with increasing concentrations of the SP6 protein. Despite the use of 20-fold higher protein concentrations, the SP6 primase stimulated DNA synthesis by the T7 polymerase less efficiently than the T7 primase. Perhaps this is attributable to a protein–protein interaction between the T7 primase and T7 polymerase that is not satisfied by the SP6 primase. Nonetheless, the oligoribonucleotides synthesized by SP6 primase were fully functional as primers for DNA polymerase.

DNA polymerase is likely but one of several proteins at the replication fork with which the primase must interact during DNA replication. For example, the E. coli DnaG primase switches (41) between essential contacts with the polymerase and the E. coli ssDNA binding protein to efficiently prime DNA synthesis (42). Likewise in the T7 replisome, both E. coli and T7 gene 2.5 ssDNA binding proteins increase the rate of initiation of lagging strand DNA synthesis by the T7 primase up to 100-fold (43) and stimulate primer synthesis by at least 5-fold (4). To determine if ssDNA binding proteins enhance the activity of the SP6 primase in a similar fashion, RNA-primed DNA synthesis assays were carried out with varying concentrations of E. coli and T7 gp2.5 ssDNA binding proteins (Figure 3B). Both ssDNA binding proteins stimulated DNA synthesis with the T7 primase severalfold. The opposite effect was observed with the SP6 primase. Less than 25% of the original activity with SP6 gp74 remained after the addition of 2.5 µM of either E. coli or T7 gp2.5 ssDNA binding proteins, indicating a possible inhibitory effect of these two proteins. These data support the notion that the T7 primase and ssDNA binding proteins work together (43) at the replication fork and highlight another important difference between the T7 and SP6 primases. Perhaps the SP6 primase requires the presence of S. typhimurium ssDNA binding protein or other SP6 replication proteins for optimal primer synthesis.

The SP6 Primase Initiates Oligoribonucleotides with pppGpC. RNA-primed DNA synthesis reactions were performed with various combinations of NTPs in order to determine the nucleotide composition of the primers (Figure 4). When GTP was omitted, RNA-primed DNA synthesis was reduced to background levels. GTP is thus essential for the priming of DNA synthesis by SP6 primase. The SP6 primase shows a less stringent requirement for ATP and CTP, with DNA synthesis reduced by 40% in the absence of either NTP. SP6 primase does not require UTP. When no ribonucleoside triphosphates are included in the reaction, no DNA synthesis is observed above background levels, suggesting that dNTPs cannot be efficiently used for primer synthesis. These data suggest that gp74 synthesizes oligoribonucleotides containing GMP, AMP, or CMP.

The composition of the oligoribonucleotide products of the SP6 primase was directly determined by performing four sets of oligoribonucleotide synthesis assays using M13 ssDNA and different combinations of the four NTPs (Figure 5, A–D). With each set of reactions, various combinations of unlabeled NTPs were included with a single [α-32P]NTP to generate unique sets of radioactive oligoribonucleotide products.
of migration of these four dinucleotides is as follows: GC > GU > GA > GG. By further examining the oligoribonucleotide species generated by the inclusion of various NTP combinations, the compositions of the other dinucleotides and several trinucleotides may be deduced (Figure 5, panels A–D). The dinucleotide composed of guanosine and cytidine was the major product observed with \([\alpha-^{32}P]GTP\) (Figure 5A) when all four NTPs or GTP and CTP were present in the reactions. Likewise, in reactions containing \([\alpha-^{32}P]CTP\), the major radioactive product was also GC (Figure 5D). In all reactions containing both GTP and CTP, the primary radioactive dinucleotide product was also GC. In reactions containing \([\alpha-^{32}P]ATP\) (Figure 5B), the major radioactive dinucleotides produced in the presence of all four NTPs were of the compositions AC and GA. The GC dinucleotides would not be visible in reactions using \([\alpha-^{32}P]ATP\). However, in reactions containing \([\alpha-^{32}P]CTP\) or \([\alpha-^{32}P]GTP\), more GC is synthesized than AC or GA, respectively. In reactions containing \([\alpha-^{32}P]GTP\), it is clear that more of the dinucleotide GC is synthesized than GA (Figure 5A). Likewise, in reactions containing \([\alpha-^{32}P]CTP\), more of the dinucleotide GC is synthesized than AC (Figure 5D). Reactions with \([\alpha-^{32}P]UTP\) (Figure 5C) produced fewer radioactive products in lower quantities, confirming that UMP is incorporated infrequently into oligoribonucleotide products. After adjusting for the specific activity of each \([\alpha-^{32}P]NTP\), we conclude that the major dinucleotide product synthesized by the SP6 primase is either 5′-GC-3′ or 5′-CG-3′. However, the experiments shown in Figure 5, panels A–D, could not distinguish between these two sequences.

To determine whether the nucleotide at the 5′-end of the oligoribonucleotide products is CTP or GTP, the oligonucleotides shown in Figure 5, panels A and D, were dephosphorylated with bacterial alkaline phosphatase and reanalyzed (Figure 5, panels E and F). Bacterial alkaline phosphatase hydrolyzes terminal phosphates while leaving internal phosphodiester bonds intact. After removal of the 5′-phosphates, the relative mobility of short oligoribonucleotides is altered (44). After dephosphorylation, the dinucleotides migrate at the slowest rate, appearing near the top of the gel. In reactions containing \([\alpha-^{32}P]CTP\), the dinucleotide products remain labeled after dephosphorylation with bacterial alkaline phosphatase, indicating that the labeled phosphate of CTP must be an internal phosphate group. Therefore, the CTP is not incorporated at the 5′-end of the oligoribonucleotides but must be incorporated as the second nucleotide. Dephosphorylated products of \([\alpha-^{32}P]GTP\) reactions show that guanosine is incorporated at the 5′-end of the dinucleotide product, as the GC product disappears with phosphatase treatment. Furthermore, the products of oligoribonucleotide synthesis reactions performed with \([\gamma-^{32}P]GTP\) (in the absence of bacterial alkaline phosphatase) include a pppGpC product (Figure 5, panel G), confirming the retention of the 5′-triphosphate moiety of GTP at the 5′-end of the gp74-synthesized oligoribonucleotide product. We conclude that the sequence of the 5′-end of the majority of the oligoribonucleotides synthesized by the SP6 primase is pppGpC.

The SP6 Primase Recognition Site Contains a Cryptic dA at the 3′-End. The DNA primases from E. coli and phages T7 and T4 each begin template-directed oligoribonucleotide synthesis at unique trinucleotide recognition sites (8, 9, 15, 45, 46). For example, the T7 primase initiates oligoribo-
at the slower rates of 0.18 and 0.14 pmol/min, respectively. These data indicate that the preferred cryptic nucleotide is dA and that the strongest SP6 gp74 recognition sequence is 5′-GCA-3′. The requirement for a cryptic dA is less stringent than the requirement of the T7 primase for its recognition sequence (47). However, the possibility remains that the SP6 primase requires more than a simple trinucleotide recognition sequence for maximum activity.

The rates of oligoribonucleotide synthesis (Figure 6) also provide direct evidence that gp74 acts catalytically. When the template 5′-(T)15-GCA-(T)15-3′ was used (Figure 6A, lane 2), 1.35 pmol of enzyme catalyzed the incorporation of 41.6 pmol of ribonucleotides during the 60 min reaction period, indicating an enzyme turnover rate (k_{cat}) of 0.009 s$^{-1}$. This rate of oligoribonucleotide synthesis is 10-fold faster than that measured for the E. coli dnaG primase (0.00089 s$^{-1}$) on short synthetic DNA templates in the absence of any auxiliary proteins (46).

Lack of Apparent Helicase Activity in SP6 gp74. The fact that the amino acid sequence of SP6 gp74 contains the five regions conserved among DnaB-like helicases suggests that it could function—like the T7 63-kDa gene 4 protein—as a helicase as well as a primase. DNA helicases use the energy of nucleotide hydrolysis to unwind duplex DNA molecules and were originally discovered as DNA-dependent ATPases (1). Helicase activity may be monitored by measuring DNA-dependent NTP hydrolysis. Assays performed with [γ-32P]ATP using SP6 gp74 and M13 ssDNA did not show evidence of DNA-dependent NTPase activity (data not shown). To test for DNA-dependent NTP hydrolysis with other DNAs and NTPs, a colorimetric assay for orthophosphate release from NTPs was also used (Figure 7A). The low rate of NTP hydrolysis observed in some reactions in Figure 7A was not consistently above background and was not proportional to the amount of SP6 gp74 present in the reactions. DNA unwinding was also measured directly by examining the ability of SP6 gp74 to displace a [5′-32P]-oligonucleotide from circular M13 ssDNA (Figure 7B) in the presence of all eight canonical NTPs. Under these conditions, no significant helicase activity was observed even at a gp74 concentration far exceeding the level of T7 helicase required to unwind all of the DNA.

DISCUSSION

DNA primases play an integral role in the initiation of both leading and lagging strand DNA synthesis. Because of the complexities of the DNA replication systems in eukaryotic organisms, and even single-celled bacteria, much attention has been focused on bacteriophages as models for the understanding of DNA synthesis. Bacteriophage DNA replication complexes offer a number of advantages over the complexes found in other organisms. In the phage T7, for example, the number of proteins involved in DNA replication is dramatically lower than the number of proteins present in the DNA replication complexes of _E. coli_ or humans. The only four proteins required for in vitro T7 DNA synthesis are the T7 gene 5 DNA polymerase, its accessory protein _E. coli_ thioredoxin, the T7 gene 2.5 ssDNA binding protein, and the T7 gene 4 protein (18). The last protein, like proteins from _E. coli_ phages T3 and P4, combines primase and helicase activities into a single polypeptide.
Sequence data indicate that the *S. typhimurium* phage SP6, a distant relative of T7 (29–31), possesses a gene that encodes a protein homologous to the primase/helicase protein of the T7 and T3 bacteriophages. We have designated the 74-kDa protein product of this gene as gp74 and shown that it is a primase. Like other DNA primases, the SP6 primase exhibits DNA-dependent RNA polymerase activity and synthesizes oligoribonucleotides up to 6 nucleotides in length that can serve as primers for T7 DNA polymerase. The oligoribonucleotides synthesized by SP6 primase are identical (red) and similar (blue) residues in this alignment. Asterisks (*) denote residues that are invariant among DnaG-like primases and other bacterial and bacteriophage primases and helicases. Residues that are invariant among DnaG-like primases and DnaB-like helicases, but are not conserved in the SP6 primase, are indicated by crosses (×). Double asterisks mark the cysteine and histidine residues believed to coordinate the zinc ion of the zinc finger motif in the primase domain. The conserved signature sequences designated as helicase boxes 1, 1a, and 2 through 6. On Figure 8, identical and similar amino acids are marked. Asterisks (*) denote residues that are invariant in SP6 gp74, the 63-kDa T7 gene 4 protein, and other bacterial and bacteriophage primases and helicases. Residues that are invariant among DnaG-like primases and DnaB-like helicases, but are not conserved in the SP6 primase, are indicated by crosses (×). Double asterisks mark the cysteine and histidine residues believed to coordinate the zinc ion of the zinc finger motif in the primase domain. The identical (red) and similar (blue) residues in this alignment point out amino acids that may be essential for primase-catalyzed oligoribonucleotide synthesis.

Most of the invariant residues of the primase and helicase boxes are present in the SP6 protein. Notable exceptions within the primase domain are glycine-85 of box 2, aspartate-110 of box 3, and glutamate-157 of box 4, which we assume are not necessary for oligoribonucleotide synthesis. The functions of these primase boxes are not fully understood, but it has been speculated that boxes 4 and 5 of the primase domain may be involved in the binding of template DNA (26). In the T7 gene 4 protein, primase box 1 has been shown to form a zinc binding motif thought to interact with primase recognition sites in template DNA (24). We propose a similar function for primase box 1 in the SP6 primase. The T7 and T3 primases possess a Cys-X₁₋₈-Cys-X₁₋₈-Cys-X₁₋₈-Cys zinc
binding motif, and bacterial DnA-like primases possess a zinc-containing Cys-X_2-His-X_2-Cys-X_2-Cys motif. SP6 primase box 1 contains a different sequence, Cys-X_2-Cys-X_2-Cys-X_2-His. The Cys and His residues in this motif could all bind zinc, forming a fingerlike motif. This zinc finger may be involved in the interaction of gp74 with primase recognition sites in DNA, in maintaining the structural integrity of the enzyme, or in interactions with other proteins at the replication fork. Based on the role of this motif in the T7 primase, we prefer the first hypothesis. Amino acid substitutions in box 1 of the T7 primase not only perturb zinc binding of the protein (55) but also alter the sequence specificity of the primase (24, 56). When histidine-33 of the 63-kDa T7 gene 4 protein is changed to alanine, the protein no longer synthesizes oligoribonucleotides in the presence of the 3'-CTG-5' recognition sequence. Instead, the T7 gene 4 H33A protein synthesizes oligoribonucleotides at sequences containing a cryptic purine (i.e., 5'-GTG-3' or 5'-GTA-3'). Remarkably the proposed recognition site for the SP6 primase also contains a cryptic purine, and the amino acid that aligns with His-33 of T7 gene 4 protein is alanine (Figure 8).

FIGURE 8: Amino acid sequence alignment between SP6 primase and the T7 primase/helicase. The amino acid sequences of the SP6 primase and 63-kDa T7 gene 4 protein were aligned using the program Clustal W (52). Boxes indicate the widely conserved primase, helicase (26), and RNA polymerase sequences (53), and the TOPRIN domain conserved among primases and topoisomerases (54). Red type indicates identity whereas blue type indicates similarity. Asterisks (*) denote residues that are invariant among SP6 gp74, T7 gene 4 protein, and other bacterial and bacteriophage primases and helicases. Crosses (×) mark residues that are widely conserved among bacterial and bacteriophage primases and helicases, but are not conserved in SP6 gp74. Double asterisks indicate the cysteine and histidine residues thought to coordinate zinc.
activity, or lack thereof. To this end, gp74 should be assayed on more diverse types of DNA and RNA substrates containing a variety of structures such as 5’ overhangs or synthetic oligonucleotide “forks” that mimic aspects of the DNA replication fork. The homology between the helicase boxes of SP6 gp74 and the T7 gene 4 protein is higher than that for the primase boxes (64.9% vs 53.2% similarity), yet the SP6 protein lacks detectable helicase activity. The nucleotide binding site (57) appears to be intact (helicase box 1), and the homology for the rest of the helicase boxes is strong. Besides the T3 and T7 primase/helicase proteins, BLAST searches using the gp74 amino acid sequence returned only various replicative DNA helicas. Thus, it is somewhat surprising that gp74 exhibits neither NTP hydrolysis nor helicase activity. A possible explanation may lie with the alteration in SP6 gp74 of 6 of the 16 residues that are invariant among helicases similar to the T7 and bacterial DnaB-like helicases (Figure 8). Although gp74 apparently does not hydrolyze NTPs in a DNA-dependent manner nor unwind DNA (Figure 7), some of these helicase motifs could be used by the protein to bind DNA or NTP substrates. Site-directed mutagenesis of the conserved residues in the SP6 primase should help determine the roles of the helicase motifs in primase function.

The inability to detect helicase activity in gp74 may also be an artifact of the purification process or assay conditions. For example, the T7 gene 4 protein functions as a hexamer (58, 59). With SP6 gp74, it is possible that such multiple subunit structures were disrupted during purification and, unlike the T7 helicase/primase, do not properly reassemble in vitro. Three preliminary observations regarding the oligomeric state of gp74 support this contention. First, the gp74 protein elutes from gel filtration columns with proteins that range in mass from 50 to 150 kDa. Second, under the conditions that the T7 gene 4 protein forms hexamers during nondenaturing polyacrylamide gel electrophoresis (59), the SP6 protein forms mainly lower molecular weight species. Third, no change in the migration rate of gp74 through native gels was detected in the presence or absence of ATP, Mg2+, or DNA. However, these nonequilibrium methods do not rule out an oligomeric structure for the SP6 primase because subtle variations in experimental conditions have been shown to greatly affect the formation of stable oligomers of the T7 gene 4 primase (58). More detailed biophysical analyses will be necessary to determine the quaternary structure of the SP6 primase. The lack of potential SP6 gp74 helicase may, alternatively, result from a requirement of other SP6 or S. typhimurium DNA replication associated proteins such as DNA polymerase or ssDNA binding protein.

SP6 gp74 is expressed remarkably well in E. coli, suggesting that it is much less toxic to the bacterium than its T7 gene 4 counterpart, which cannot be overexpressed in E. coli without a mechanism of inhibiting its lethal dTTPase activity (59). A high level of SP6 primase expression could facilitate biophysical and structural analyses. The in vivo role of the SP6 primase in phage replication could also be determined through genetic studies. For example, although the presence of the SP6 primase gene does not permit the growth of T7 phage lacking gene 4, it may complement the temperature-sensitive phenotypes of other primase mutants. The construction of SP6 phage lacking a complete SP6 primase gene will be essential to completely understand the biological role of gp74. Furthermore, now that the properties of SP6 primase have been described, the pg74 could be purified from phage-infected S. typhimurium cells to identify potential cofactors and replication proteins that may enhance its activity. Additional comparative studies among the SP6, T7, T3, and P4 proteins will also aid in the elucidation of the biochemical mechanism of primases and advance functional genomics. A fifth protein, gp37 from the lamdoid phage N15 (accession no. AAC48876), has recently been reported that also contains significant homology to both helicases and primases. If gp37 does possess primase or helicase activities, a biochemical analysis could further help define essential primase and helicase motifs and thus allow the more precise prediction of function from amino acid sequence.

ACKNOWLEDGMENT

We thank Benjamin B. Beauchamp, James M. Stuttel, and Stanley Tabor for providing purified proteins and helpful discussions.

REFERENCES

5 D. N. Frick, T. Y. Tseng, and C. C. Richardson, unpublished data.