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Abstract. A key forecast challenge is to anticipate transitions in the atmospheric flow. Ensemble prediction has become an indispensable tool in weather forecasting, as a means of quantifying the relative likelihood of particular future states. One of the issues in ensemble prediction, however, is that regardless of the method, the prediction error does not map well to the underlying physics (in other words, error estimates do not project strongly onto physical structures). In this work, we show through a series of experiments evidence that a nonlinear approach will allow us to isolate and eliminate a deterministic portion of the error in an ensemble prediction. This, in combination with appropriate diagnostics, will first enable a more accurate prediction of transitions in the large-scale atmospheric flow and second, more cleanly relate the error to the underlying state, thereby gaining insight into the predictability of such transitions. The experimental basis is provided from results obtained from three increasingly sophisticated chaotic systems, which incorporate atmospheric transitions and hemispheric structure. Using neural networks to probe the deterministic component of forecast error, we show that the error recovery relates to the underlying type of flow and that it can be used to better-forecast transitions in the atmospheric flow using ensemble data. We discuss a diagnostic method that might be employed on more sophisticated atmospheric models such as the full primitive equation ensemble-modeling systems currently employed in operations.
1 Introduction

Since the mid-latitude atmosphere is characterized by variability, persistent flow patterns often lead to anomalous sensible weather (e.g., temperature, precipitation). Yet, one challenge in short to medium range weather prediction is anticipating transitions in the large-scale atmospheric flow. Hence, an improved understanding of the physics and predictability of such flow transitions is desirable.

An example of this is provided by a so-called Hovmöller plot of the middle atmospheric flow pattern (strictly, the height of the constant 500 hPa surface, averaged between 30 and 40°N) for a three month period in the spring of 2006 (Fig. 1). A persistent trough is evident over the western United States during the early spring, which gives way to a ridge in May. This is reflected by the monthly temperatures, which are anomalously cool in March (Fig. 2) and warm in May (Fig. 3) in that region.
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Fig.1. Hovmöller plot of 500 hPa height for 30-40°N for March-May 2006.
The fundamental problem of weather forecasting is to identify the range of possible meteorological scenarios that might evolve from a given initial state, and determine whether multiple solutions have high probability (indicating low confidence in an individual solution) or if a single evolution is the most likely (with corresponding high confidence). This probabilistic view is necessitated by the complexity of atmospheric dynamics (e.g. Lorenz 1963; see a general review in Kalnay 2003). Specifically, limits to deterministic predictability originate from two general sources: model error and initial condition error. 
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Fig. 2. Standardized Temperature anomalies for the continental United States for March 2006.
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Fig. 3. Standardized Temperature anomalies for the continental United States for May 2006.

Model error arises because of imperfections in our characterizations of the laws of nature, arising either through parameterization of complex and/or poorly understood physics (such as boundary layer and cloud microphysical processes) or an inability to resolve atmospheric processes smaller than a certain threshold (e.g., atmospheric convection with a 10 km grid point model), with resultant upscale error growth. 


Initial condition error arises because of the finite spatial availability of observed data (including some variables that are not observed at all), missing data, inaccuracies in the data and imperfect analysis techniques. All of these errors, even with a perfect model, will grow nonlinearly over time, eventually swamping the forecast signal (Lorenz 1963; 1965; 1968).

The rate of error growth and hence the lead time at which predictability is lost depends on the stability of the evolving flow (Lorenz 1965), which in addition is affected by factors such as the large scale flow pattern, season, and geographical domain (Lorenz 1984; 1990). Ensemble forecast systems have been developed as a means to quantify forecast uncertainty, using a variety of methods to simulate analysis and model uncertainties. In the middle latitudes, numerical weather prediction models are often considered to be good enough that to a first approximation, forecast error growth at medium range can be attributed primarily to the process of growing instabilities in a chaotic system that result from initial condition uncertainties. This "perfect model" assumption is more prone to failure, however, for short-range forecasts where small-scale features may depend crucially on the physics (e.g., convection) or where substantial flow transitions are occurring. For this reason, we also consider model error in this work (section 2.3).

A deeper understanding of the physical evolution of error structures can potentially reveal much concerning both the natural dynamics of the atmosphere and model deficiencies (and hence, lead to a better understanding of nature). Currently, there are four primary methods for assessing analysis uncertainty: breeding [until recently, used at the US National Centers for Environmental Prediction (NCEP)], singular vectors (used at the European Centre for Medium-Range Weather Forecasts), Kalman filters (currently a topic of active research and now implemented at NCEP) and Monte Carlo methods (used at the Canadian Meteorological Centre).


Although the technical details of each of these methods are distinct (see Kalnay 2003 for an overview), they each rely on a single concept: initial analysis uncertainties are simulated by adding small perturbations (within the limits of the uncertainty of the analysis) to the unperturbed (control) analysis. It is important to recognize that these techniques are intended to simulate analysis uncertainty, not necessarily to reveal intrinsic dynamics. Tribbia and Baumhefner (2004) argue that these uncertainties seed the baroclinically active region of the spectrum and organize over time on the synoptic scales, extracting energy from the larger-scale flow rather than the smaller scales.


In the breeding method, analysis errors are considered to be filtered forecast errors. As such, much of the analysis error may represent phase error, a typical problem in data sparse regions. The singular vector method attempts to directly calculate forecast error, under the assumption that the components of the error that grow most rapidly will dominate. In practice, the actual error may project more or less strongly onto these growing patterns and experience with this method suggests that these patterns do not "map" directly onto locations that are consistent with synoptic experience as to the origins of forecast uncertainties (e.g., the position of an upper level jet streak). The Kalman filter method uses estimation theory to more accurately express the breeding method's fundamental hypothesis that analysis errors are filtered forecast errors. As such, this method likely preferentially identifies phase errors, which are consistent with the underlying attractor. The Monte Carlo method perturbs all available observations simultaneously with random numbers of realistic amplitude (with respect to error statistics). Hence, no direct dynamics can be inferred from this method.


It is well known that, given a nonlinear system, the evolution of small fluctuations is given by the linearized equations:
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(1)

where J is the Jacobian. These fluctuations can be thought of as an unbiased measurement error, enb, and/or a biased error arising through the data assimilation process, eb, which contribute to the forecast error (this latter case is also a form of model error). Since the Jacobian implies deterministic operations, some recoverable dynamics are included in the error. This conclusion also holds for the more general, nonlinear problem.


Conceptually, the idea is as follows. As discussed by Palmer (1995) (see his Fig. 2.1), in the early part of the forecast (2-3 days), error growth is governed by linear dynamics. The probability density function (PDF) evolves from an m-dimensional ball to an ellipsoid, with the major axis corresponding to the dominant instability. The PDF than progresses to the weakly nonlinear stage (up until about day 7), wherein the ellipsoidal shape is deformed and there is a change in the major axis direction. Following this, the PDF growth is strongly nonlinear and there may be little correspondence between the major axis obtained in the linear stage and the dominant directions of growth. As Palmer (1995) notes, however, despite this nonlinear growth, predictability has not necessarily been lost. We demonstrate in section 2, using three chaotic systems of increasing complexity, that a nonlinear method can capitalize on recovering part of the forecast error provided by any of the above ensemble approaches and then relate that error recovery to the underlying state of the flow. Specifically, the technique allows one to obtain an improved measure of the forecast uncertainty which can be used in concert with diagnostics to relate the evolution of the error to the underlying flow. 


The use of simple models to gain insights into complex problems has a rich history in meteorological research (recent examples are the investigations of the dynamics of model error by Nicolis 2003; 2004). The low order modeling approach is undertaken on three models in this Chapter (the recursive logistic equation, a low-dimensional climate model with identifiable flow patterns and a low-dimensional, but non-local atmospheric model) with the expectation that it may reveal general principles, the details of which will need to be determined by resorting to studies using more complex models. In section 3, we outline a possible extension of this technique to full atmospheric models, with the objective of improving understanding of the predictability of transitions in the large-scale atmospheric flow.  

2 Examples

2.1 The Logistic Equation

First, we consider a very simple mathematical system, which however can be extremely sensitive to initial conditions. It is the logistic equation: 






Xn+1 = ( Xn (1-Xn) 


(2)

where ( is a parameter. In this very simple discrete system, future values are obtained by successive iterations. The system exhibits a variety of dynamics for different values of (. For (=4 the system is strongly chaotic with a corresponding Lyapunov exponent equal to ln(2). This means that if the initial condition is specified with an error of less than 1%, the forecast is no better than "climate" after approximately six iterations.
For the experiments with the logistic model, the operational data assimilation cycle was mimicked: an analysis was constructed, consisting of a weighted average of observations (incorporating an unbiased error enb,o) and a first guess (obtained from a previous short-term forecast from the model). This analysis was used as the basis for the next forecast, and the short-term forecast from that run was then cycled back into the succeeding analysis. For all our tests, the set of forecasts were extended from two to four iterations into the future, a time scale for which substantial error growth occurs in the logistic equation with these error characteristics (Fig. 4).
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Fig. 4. Logistic equation “control” and "perturbed" initial state runs, through 4 iterations.

Error recovery was investigated using neural networks. Neural networks are nonlinear tools that are often used to model nonlinear deterministic dynamics when the actual equations describing the dynamics are not available. In its simplest form the architecture of a neural network involves a set of inputs p[i] and an output Q. Using a training sample the inputs are assigned optimum weights, w[i], and then the inner product, P=(p[i]w[i], is estimated. The final output Q is then obtained by passing P through a nonlinear function f(x). Such a network is called a two-layer network since it involves a layer for the inputs and a layer for the output. Neural networks can become more complex by adding hidden layers or by including more than one output. In general, with the help of known outputs (from the training sample) the network, initially set to a random state, modifies its structure (changes the weights) in such a way as to improve its performance. If the network architecture is rich enough, this procedure leads the network to a state where inputs are successfully mapped into outputs for all chosen training (input-output) pairs. Essentially, the network describes a nonlinear model fit of the error. Further information on neural networks can be found in Tsonis (1992), Roebber, Bruening, Schultz and Cortinas (2003), Marzban (2003) and references therein. 


The procedure to train and evaluate the network was as follows (note: this procedure is followed for all the networks discussed herein, except where otherwise noted). Data were evenly split into training and testing samples. Training was accomplished using 10% of the training data for cross-validation (to avoid overfitting). The error in the cross-validation dataset was monitored and training was stopped when this error began to increase. The cost function used in the training was the mean-square error. The deepest local minimum in the training over several reinitializations was taken to be the global minimum.


A generalized feed-forward network with one hidden layer (and 70 nodes) was used for the error recovery experiments. The optimal number of nodes was determined using cross-validation. The activation functions were hyperbolic tangent, while a momentum learning rule was used for training (to speed up and stabilize convergence relative to straight gradient descent). Nine inputs were used: the initial analysis, the observations (including error) at the initial time and the lagged forecasts at 2, 3 and 4 time steps validating at the verification time. 


Correlation coefficients between "forecasts" from the logistic equation and the verification (using the unperturbed initial conditions) show that, at 2 time steps, substantial predictability exists (r=0.80; Table 1). Despite this high predictability, the forecasts can be improved still further (~17% relative to the 2 iteration forecast, based on the increase in accounted variance) with the trained neural network. This exceeds by 8% the predictability obtained with a linear regression whose inputs are the set of lagged forecasts with regression coefficients optimized using the training dataset (not shown). Hence, in this highly chaotic system, it is still possible to recover a significant fraction of the total forecast error using the nonlinear technique (~48%, based on the amount of accounted variance relative to the maximum possible improvement over the 2 iteration deterministic forecast).

2.2 The Lorenz (1984) Climate Model

While the above is an example of a general chaotic system on which one could test our hypothesis, it has little relationship to atmospheric phenomena. As such, it leaves unanswered the question as to whether this approach can be applied to large-scale atmospheric flows. For this reason we consider another example, which represents a low-order general circulation model (Lorenz 1984; 1990). It is also highly chaotic and is described by the following equations:
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(3)


These equations can be derived from the mean and perturbation quasi-geostrophic potential vorticity equations, using a truncated Fourier series expansion of the geostrophic stream-function (Holton 2004). The independent variable t represents time, while X, Y, and Z represent the meridional temperature gradient (or equivalently from thermal wind balance, the strength of the zonal flow), and the amplitudes of the cosine and sine phases of a chain of superposed large scale eddies, respectively. The term F represents the meridional gradient of diabatic heating, the value to which X would be driven in the absence of coupling between the westerly current and the eddies. The term G is the asymmetric thermal forcing, representing the longitudinal heating contrast between land and sea, and is the value to which Y would be driven in the absence of coupling. The coupling is represented by the terms XY, XZ, and -Y2-Z2, and results in amplification of the eddies at the expense of the westerly current. 


With F=8 and G=1 (representing perpetual winter conditions; see Lorenz 1984; 1990; Roebber 1995), the above system exhibits two very distinct flow patterns (Fig. 5). The first, which consists of low amplitude fluctuations, represents a steady, zonal jet. The second, consisting of high amplitude fluctuations, corresponds to alternating strong and weak jets. Another regime is that of a blocking event, but its frequency of occurrence for these parameters is very small and highly transient. For our analysis, this pattern will not be considered. 


Predictability in this system is strongly dependent on initial conditions (Fig. 6). In this example, a forecast starting with a small error in the initial state results in an error that is quite large by three time units (representing 120 time steps), the result of a forecast transition from a high amplitude to a low amplitude flow that did not verify. In other instances, of course, pattern transitions will be correctly forecast and the errors will be less. 


Experiments with the Lorenz model were designed as follows. The model was run without interruption for an extended period (1164 time units) and the data recorded (base run). The model was then rerun 194 times out to 6 time units (6x194=1164), with the initial conditions obtained from the corresponding values of the base run with a small error superimposed (mean absolute error for the initial conditions of the resulting 194 runs is 0.08 in X, Y and Z). Of these 194 runs, 98 (96) were high-amplitude (low-amplitude) flows. 
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Fig. 5. Lorenz (1984) climate model integration for a 40 time unit period. The value of X is shown. High amplitude oscillations are apparent from time=315 through 330, followed by low amplitude oscillations through time=340, and back again to high.


Table 1 shows that for the low-amplitude pattern at 2 time units, predictability is relatively high (r=0.77), but that it is still possible to recover a substantial portion of the error using neural networks sorted according to the flow (note that the network design is the same as that used for the logistic equation, except with 7 inputs representing the initial analysis and observed values for X, Y and Z at lead times of either 2 or 4 units, plus the forecast value for X at the verification time). 


In contrast, predictability is much higher for the high amplitude pattern and little additional predictability can be achieved. By 4 time units, these differences are accentuated (Fig. 7), with limited correspondence between the forecast and observed states for the low amplitude pattern, but substantial error recovery using a neural network with the initial analysis, observations (including error) at the initial time and the forecast as inputs (Table 1). Figure 8 is similar to Fig. 7, but shows the corrected forecasts using the neural network. Comparison between Figs. 7 and 8 clearly shows that the error variance of the high amplitude pattern remains approximately the same following non-linear correction, but that the error variance of the low amplitude cases decreases significantly.
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Fig. 6. Lorenz (1984) climate model integrations for a 6 unit time period, starting from an initial state and a second integration from a slightly perturbed initial state. The value of X, the meridional temperature gradient from the model, is shown.


This finding indicates, as suggested earlier, that the error recovery is flow dependent, a result that is consistent with previous research that documents flow dependent predictability in the observed atmosphere (e.g. Nutter, Mullen and Baumhefner 1998). This suggests that it should be possible to use this differential error recovery to map the error to the underlying physical characteristics of the zonal jets. Since the varying flow is dictated by the physics of the system, this would indicate that error recovery could be used to understand the physics. Here, the low amplitude state in the model occurs for relatively large available potential energy and small kinetic energy, such that a flow transition also reflects a substantial transition in the energy budget. Importantly, this result also holds for pattern transitions [in which the initial flow is a low (high) amplitude flow which transitions to a high (low) amplitude flow by forecast verification time], such that an additional 9-12% of the variance can be accounted for at 2-4 time units in these cases compared to those in which a particular pattern is maintained throughout the forecast interval (Table 1). 


These results suggest that differential error recovery also can be used within an ensemble forecast context to forecast flow transitions. To test this idea, the Lorenz model was used to generate ensemble forecasts for a set of events in which both patterns verify. The reduction of the variance in the model ensemble forecasts (as opposed to the error, which is unknown in forecast mode) using the previously trained neural network (with a median ensemble size of 8 members) is used to classify the forecast as representing either the low or high amplitude pattern (Table 2). The classification is performed using a simple probabilistic model assuming that the error recovery is normally distributed (a hypothesis that cannot be rejected at the 1% level of significance, based upon the Kolomogorov-Smirnov test of Normality). 

	Experiment
	Deterministic

Forecast
	Neural

Network

	Logistic – 2 iterations
	0.80
	0.90

	Lorenz – low – 2 time units
	0.77
	0.87

	Lorenz – low – 4 time units
	0.35
	0.67

	Lorenz – high – 2 time units
	0.95
	0.97

	Lorenz – high – 4 time units
	0.78
	0.84

	Lorenz – trans – 2 time units
	0.83
	0.94

	Lorenz – trans – 4 time units
	0.61
	0.83


Table 1. Correlation coefficient between forecasts and “truth” for the logistic and Lorenz (1984) models. The Lorenz model verifications are stratified according to the low and high amplitude flow patterns, and pattern transitions from low-to-high and high-to-low.

Reduction in Standard Deviation of X (meridional thermal gradient)

	Forecast range
	Final

High Amplitude
	Final

Low Amplitude

	2 time unit ensemble
	0.0607
	0.1089

	4 time unit ensemble
	0.0675
	0.2608


Ensemble Pattern Diagnosis – Contingency Table (# of cases)

	Pattern at

Final Time
	Diagnosed Final Pattern

	
	Low Amp
	High Amp

	Low Amp
	73
	22

	High Amp
	9
	83


Measures-based Verification of Network Pattern Diagnosis

	Pattern at

Final Time
	Probability

of detection
	False Alarm Rate
	Bias
	True Skill 

Statistic

	Low Amp
	0.77
	0.11
	0.86
	0.67

	High Amp
	0.90
	0.21
	1.14
	0.67


Table 2. Error recovery and flow pattern diagnosis in the Lorenz (1984) model. Shown are the reduction in the standard deviation of the ensemble forecasts using the neural network for the two patterns at two time ranges; the contingency table of pattern diagnostics and associated verification statistics.


Standard measures-oriented skill verifications show that this technique is highly successful in the context of this two pattern model (note that the true skill statistic for the ensemble mean forecast is a considerably lower 0.32). These experiments indicate that the theoretical possibility of partial error recovery can be realized even in highly nonlinear systems, and that it may be possible to apply techniques of this kind to the output of ensemble systems to better predict and understand atmospheric flow transitions.
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Fig. 7. Scatterplot of Lorenz (1984) model forecasts (4 time units from initial state) and "observed" values of X (meridional temperature gradient)for the two flow patterns.
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Fig. 8. Scatterplot of neural network corrected forecasts (4 time units from initial state) and "observed" values of X (meridional temperature gradient) for the two flow patterns. Note the reduction of variance in low amplitude cases relative to Fig. 7.
2.3 The Lorenz (1995) Hemispheric Model

So far, we have investigated an approach in which a nonlinear method is used to recover the deterministic component of the forecast error. Using two low-order nonlinear models we show that not only this is possible, but that this error recovery reduces the forecast error enough to allow us to map the remaining error to the underlying state and to improve the prediction of transitions. Success in correcting other types of forecasts with neural networks have been obtained in realistic forecast settings (e.g., Hall, Brooks and Doswell III 1999; Roebber et al. 2003; Marzban 2003), so there is reason to suppose that this approach might be useful with actual atmospheric data.


Some additional aspects must be considered, however, before it can be applied to real ensemble forecast systems. First, the simple ensemble system studied in this preliminary analysis effectively represents a single point; hence, this local error correction method must be generalized to account for the effects of error propagation in real systems. Second, this study has been conducted under the constraints of the perfect model assumption. As noted in section 1, model error imposes an important limit on forecast accuracy. 


In order to address these aspects, we turn to experiments with another simple (but nonlocal) chaotic atmospheric model (Lorenz 1995). This model, slightly modified to allow downstream progression, contains 36 variables X1, …, X36 and is governed by 36 equations of the form:
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where k ranges from 1 to 36 and the constants F and c are independent of k. The Xk can be thought of as values of 500 hPa height in 36 sectors of a latitude circle. This structure, which conserves total energy, simulates external forcing, internal dissipation and advection. With the external forcing F equal to 8 in this system, the error doubling time is approximately 2.1 days, consistent with that of global circulation models (Lorenz 1995). Hovmöller type plots of the output from this model indicate that it produces a reasonable simulation of observed atmospheric evolutions, in the sense that the flow can retrograde, remain quasi-stationary and progress, while changing amplitudes (Fig. 9).


A perfect model experiment is established as follows. A simulation comprising 30 years of model time is produced using Eq. 4 to represent the daily evolution of the actual atmosphere. This 30-year time frame is imposed to simulate the availability of actual ensemble forecast data and test feasibility. Then, daily 10-member ensemble forecasts out to 12 days range are produced for the entire 30 years using Eq. 4 with the “actual” data plus a small unbiased, random error as initial conditions (the median absolute initial condition error is 2.5% for individual members). Because of the symmetry of the model, each longitude exhibits statistically similar behavior. Hence, for the ensuing training and testing, we focus on a single longitude (k=18). 


At 10 day range, individual ensemble members correlate with the “observations” with r=0.56, while the 10-member ensemble mean improves to r=0.79, with a tendency for the ensemble mean to underpredict the extreme events. Further, forecast variability within the ensemble positively correlates with ensemble mean forecast error (r=0.56), a result consistent with theoretical expectations in a perfect model environment (unfortunately, the predictive value of this information by itself is limited, since the variability is unable to provide an indication of whether the errors will be positive or negative in a given case). 


In order to extract temporal information contained in the data, an Elman-type neural network, a form of the multilayer perceptron (MLP) extended with context units (processing elements that “remember” past activity, in this case, past inputs), was trained to correct the forecasts (the target was the “analysis” rather than the actual state, which in practice is not known). Inputs in the training were the 10 day, 11 day and 12 day ensemble mean forecasts validating for the same date, and the standard deviation of the 10 day ensemble forecast derived from the 8 members of the ensemble. The sequence of lagged forecasts provides information concerning trends in the forecast (likely representing the impact of upstream error propagation), while the ensemble forecast variance provides a measure of the uncertainty, as previously noted. The time-dependent network design facilitates the extraction of trends in the forecast inputs. The network contained one hidden layer with 140 nodes, with a linear integrator in the context units. 


The output from this network provides a 2.5% improvement in accounted variance relative to the ensemble mean. For those cases with large ensemble variance (as defined by ensemble standard deviations above the 75th percentile), however, the network improvement is 6.7% relative to the ensemble mean. Such variability in medium range forecasts is often associated with flow transitions, indicating that the technique may be most useful in these important situations. Indeed, in the cases where the network error was low and the ensemble mean error was not (defined by the 25th percentile of the error), the flow was characterized by moderate amplitude features with an upstream trough and a downstream ridge. In contrast, low error in the ensemble mean was preferentially associated with zonal flows.
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Fig. 9. Observed (top) and Lorenz (1995) modeled (bottom) 500 hPa flow for two randomly selected 30 day periods. Dark (light) are negative (positive) height anomalies.

We next ask, what is the impact of model error on our ability to recover the forecast signal? An imperfect model experiment is established by producing daily 10-member ensemble forecasts out to 12 days range as before. However, in Eq. 4, F is set to 8.5 to represent a deviation from the perfect model with F=8. This change increases the error doubling time (Lorenz 1995). Here, the spread-skill relationship is less good, with r=0.35 (comparable to NCEP ensemble model results at medium range as reported by Whitaker and Loughe 1998). At 10 day range, individual ensemble members correlate with the observations with r=0.37, while the 10-member ensemble mean improves to r=0.53. An Elman-type network is trained as before with the same inputs. In this instance, the network output provides an 11.6% improvement in accounted variance relative to the ensemble (23.8% when considering those cases with large ensemble variance). Hence, in the realistic setting of limited training data and an imperfect model, the nonlinear correction technique appears increasingly valuable as far as reduction of error in the ensemble mean.


An important extension to this is in the estimation of forecast uncertainty. The ensemble system itself provides a measure of forecast uncertainty through the spread of the individual members. What benefit does the neural network technique provide in this context? In order to address this, the trained network was used to correct the individual members of the ensemble (inputs were as above, except that each individual member was substituted for the ensemble mean for each of the 10 members in turn, and the network rerun). This results in a new ensemble, consisting of the 10 corrected individual members, which is (unsurprisingly) statistically similar to the original, corrected ensemble (correlation between the two ensemble means is 0.998). What is gained, however, is an improved measure of forecast uncertainty. The new ensemble shows a gain in the spread-skill relationship of 5.5% relative to the raw ensemble standard deviation.

We have shown that there is both theoretical and experimental evidence that a nonlinear approach will allow us to isolate and eliminate a deterministic portion of the error in an ensemble prediction. We have shown that this is true even in the context of non-local errors, and further that the approach is most effective where significant ensemble variability exists, such as associated with flow transitions, and where the models are imperfect. We have shown that an improved measure of forecast uncertainty is obtainable.


The remaining question is how to connect the findings from these preliminary experiments to the real atmosphere? In the next section, we discuss a diagnostic that might be used to relate the error obtained from these methods to the underlying state, thereby gaining insight into the predictability of such transitions.


3 A Future Diagnostic

We desire a method that will allow a direct examination of the physics of the flow-dependent error in a full physics global forecast model. In order to accomplish this, we will need an estimate of the spatial structure of the evolving forecast errors. One natural approach follows from section 2.3: employ “Hovmöller” networks, as in the case of the Lorenz (1995) hemispheric model. A measure of the flow (e.g., 500 hPa height anomalies) at a given longitude for a specified latitude band could be used as inputs to an Elman-type neural network. The output from the network would be the corrected forecast of the original ensemble (note that as before, the lagged ensemble mean forecasts and the variation of the individual members make up the input to the network to simplify training; the individual members of the ensemble are used for production of a corrected ensemble mean and spread). These corrected flow measures, which are quite distinct from the raw ensemble data, can then be examined, in combination with verification data, to determine the spatial structure of the corrected errors within specific flow patterns and their relation to the corresponding state (dynamics) of the flow. Unlike the statistically uniform Lorenz (1995) model, longitudinal variation in the “climate” of the real atmosphere can be significant. Hence, the correction procedure would be applied to a series of longitudes, within the mid-latitude band, using independently trained networks. This procedure could be extended as needed to multiple vertical levels and latitude bands. Whether such steps are necessary will need to be informed by actual experiments. 

An appropriate methodology for studying the dynamics of large-scale flow transitions has been presented by Nielsen-Gammon and Lefevre (1996) and Evans and Black (2003). This method involves a partitioning of the local time tendency of quasi-geostrophic potential vorticity into advective and nonconservative forcing terms, and through piecewise inversion, obtaining the height-tendencies induced by that forcing. Since height anomalies are closely linked with circulation anomalies, this formalism will allow for a quantitative examination of the dynamics (specifically, linear baroclinic and barotropic growth mechanisms and nonlinear interactions; see Evans and Black 2003 for details) during flow transitions associated with particular error structures. Individual and flow pattern composite analyses could be used to examine the predictability of these transitions. 

As a simple example, consider results obtained from the Lorenz (1995) model experiments. Transitions from zonal to meridional flow are found to be associated with high ensemble forecast error. Reduction of the error using the neural network technique was found to be significant in these instances (23.8%, when considering an imperfect model setting). Given similar behaviors in a full physics ensemble, one could proceed as follows.  First, the reduced error would be used to quantify the evolution of the error structures and to measure the forecast uncertainty during these transitions. Second, using the piecewise tendency diagnosis technique, one could investigate the dynamics of those flow transitions in which the corrected forecast uncertainty is high versus those cases in which it is not. What are the differences in the operative physics in these instances? How do the corrected error structures map onto the physics? Evans and Black (2003) found that for high amplitude Pacific circulation anomalies of both signs, onset was governed primarily by baroclinic growth, with secondary contributions from barotropic deformation. In the Atlantic, in contrast, barotropic growth was primary. We hypothesize that differences in baroclinic versus barotropic growth processes may have an important influence on predictability, but this remains to be demonstrated.
 It is known that neural networks require relatively extensive data for effective training, in order to represent every part of the multidimensional input space and to protect against memorization. This is particularly true in the context of hemispheric or global models, where the dimensionality is necessarily large. In the experiments reported here, it was of course possible to generate as much data as needed for effective training. In order to evaluate the likelihood of obtaining satisfactory results using an existing ensemble dataset (e.g., the Climate Diagnostic Center Reforecast Ensemble, which includes data since 1979), however, we have deliberately restricted the generated data in our experiments with the Lorenz (1995) model. In doing so, we have established that it is possible to train a “Hovmöller” type of network within real data limitations.

There are two additional issues related to error structures that should be explored in the context of real data. First, what is the impact of the hemispheric structure of initial condition error, which exists owing to the relative paucity of observations over the oceans? Based on our preliminary experiments, which showed the greatest improvements where ensemble variance (and hence forecast error) was largest, it seems likely that the greatest corrections will be obtainable over these data sparse regions. Second, what is the impact of the temporal error correlation that also results from the geographic variation in observation density (the larger errors over the oceans will tend to persist until they are corrected by an observation)? Again, based on our preliminary analyses, these errors will likely be preferentially corrected; further, the temporal character of these errors will be accommodated by the network and data input design, which feature temporal aspects.

4 Summary

In this work, we have investigated a nonlinear approach that allows us to isolate and eliminate a deterministic portion of ensemble prediction error. Experiments with this technique are conducted using data from three increasingly sophisticated chaotic systems, starting with the logistic equation and continuing with the Lorenz (1984) climate model (which incorporates atmospheric transitions) and finally the Lorenz (1995) hemispheric model. Neural networks are used to probe the deterministic component of the forecast error in each of these systems. We show that the error recovery relates to the underlying type of flow and that it can be used to better-forecast transitions in the atmospheric flow using ensemble data. For these systems, we show that a more accurate prediction of transitions can be produced, and that using appropriate diagnostics, we can relate the error to the underlying state and thereby gain physical insight into their predictability. For more sophisticated atmospheric models such as the full primitive equation ensemble-modeling systems currently employed in operations, we discuss a diagnostic method that might be employed.
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