Refereed Publications

  1. Kravtsov, S., 2017: Pronounced differences between observed and CMIP5 simulated multidecadal climate variability in the twentieth century. Geophys. Res. Lett., DOI: 10.1002/2017GL074016.
  2. Kravtsov, S., and D. Callicutt, 2017: On semi-empirical decomposition of multidecadal climate variability into forced and internally generated components. International J. ClimatologyDOI: 10.1002/joc.5096.
  3. Sugiyama, N., S. Kravtsov, and P. Roebber, 2017: Multiple climate regimes in an idealized lake–ice–atmosphere model. Climate Dyn., DOI: 10.1007/s00382-017-3633-x.
  4. Kravtsov, S., N. Tilinina, Y. Zyulyaeva, and S. Gulev, 2016: Empirical modeling and stochastic simulation of sea-level pressure variability. J. Appl. Meteor. Climat. DOI: 10.1175/JAMC-D-15-0186.1.
  5. Jajcay, N., J. Hlinka, S. Kravtsov, A. A. Tsonis and M. Palus, 2016: Time scales of the European surface air-temperature variability: The role of 7–8-year cycle. Geophys. Res. Letts., 43, 902–909, DOI: 10.1002/2015GL067325.
  6. Kravtsov, S., M. Wyatt, J. Curry, and A. A. Tsonis, 2015: Comment on “Atlantic and Pacific Multidecadal Oscillations and Northern Hemisphere temperatures.Science, 350, 1326, DOI: 10.1126/science.aab3570.
  7. Kravtsov, S., Rudeva, and S. Gulev, 2015: Reconstructing sea-level pressure variability via a feature tracking approach. J. Atmos. Sci., 72, 487-506, DOI: 10.1175/JAS-D-14-0169.1.
  8. Kravtsov, S., N. Sugiyama, and A. A. Tsonis, 2014. Transient behavior in the Lorenz model. Nonlin. Processes Geophys. Discuss., 1, 1905–1917. DOI: 10.5194/npgd-1-1905-2014.
  9. Kravtsov, S., M. G. Wyatt, J. A. Curry, and A. A. Tsonis, 2014: Two contrasting views of multidecadal climate variability in the 20th century. Geophys. Res. Lett., published online, doi:10.1002/2014GL061416.
  10. Hanrahan, J., P. Roebber, and S. Kravtsov, 2014: Attribution of decadal-scale lake-level trends in the Michigan–Huron system. Water, 6 (8), 2278–2299, DOI: 10.3390/w6082278.
  11. Kravtsov, S., and S. Gulev, 2013: Kinematics of eddy–mean-flow interaction in an idealized atmospheric model. J. Atmos. Sci., 70, 2574–2595. DOI: 10.1175/JAS-D-12-0309.1.
  12. Kravtsov, S., 2012: An empirical model of decadal ENSO variability. Climate Dynamics, 39, 2377–2391. DOI: 10.1007/s00382-012-1424-y.
  13. Peters, J., and S. Kravtsov, 2012: Origin of non-Gaussian regimes and predictability in an atmospheric model. J. Atmos. Sci.,69(8), 2587–2599. DOI: 10.1175/JAS-D-11-0316.1.
  14. Peters, J. M., Kravtsov, S. V., Schwartz, N. (2012). Predictability associated with nonlinear regimes in an atmospheric model. J. Atmos.Sci.,69(3), 1137–1154. DOI: 10.1175/JAS-D-11-0168.1.
  15. Wyatt, M., S. Kravtsov, and A. A. Tsonis, 2012: Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability. Climate Dyn., 38, 929–949, DOI: 10.1007/s00382-011-1071-8.
  16. Kravtsov, S., I. Kamenkovich, D. Kondrashov, and M. Ghil, 2011: Empirical stochastic model of sea-surface temperatures and surface winds over the Southern Ocean. Ocean Sciences, 7, 755–770. DOI: 10.5194/os-7-755-2011.
  17. Kravtsov, S., I. Kamenkovich, A. M. Hogg, J. M. Peters, 2011: On the mechanisms of late 20th century sea-surface temperature trends over the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 116, C11034. DOI: 10.1029/2011JC007473.
  18. Kravtsov, S., and R. Olivas Saunders, 2011; Comment on “Lies, damned lies, and statistics (in Geology).” Eos Trans. of AGU, 92, 65. DOI: 10.1029/2011EO080011.
  19. Culina, J., S. Kravtsov, and A. Monahan, 2011: Stochastic parameterisation schemes for use in realistic climate models. J. Atmos. Sci., 68, 284–299.   DOI: 10.1175/2010JAS3509.1.
  20. Kondrashov, D., S. Kravtsov, and M. Ghil, 2010: Signatures of nonlinear dynamics in an idealized atmospheric model.J. Atmos. Sci., 68, 3–12. DOI: 10.1175/2010JAS3524.1.
  21. Dharshana, K. G. T., S. Kravtsov, and J. D. W. Kahl, 2010: The relationship between synoptic weather disturbances and particulate-matter air pollution over the US. J. Geophys. Res. Atmos., 115, D24219. DOI: 10.1029/2010JD014852.
  22. Jamison, N., and S. Kravtsov, 2010: Decadal variations of North Atlantic sea-surface temperature in observations and CMIP3 simulations. J. Climate, 23, 4619–4636. DOI: 10.1175/2010JCLI3598.1
  23. Hanrahan, J. L., S. Kravtsov, M. Ghil, and P. Roebber, 2010: Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett., 37, L01701, DOI:10.1029/2009GL041707.
  24. Strounine, K., S. Kravtsov, D. Kondrashov, and M. Ghil, 2010: Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance. Physica D, 239, 145–166, DOI:10.1016/j.physd.2009.10.013.
  25. Hogg, A., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082. DOI: 10.1175/2009JCLI2629.1.
  26. Kravtsov, S., M. Ghil, and D. Kondrashov, 2009: Empirical Model Reduction and the Modeling Hierarchy in Climate Dynamics and the Geosciences. Stochastic Physics and Climate Modeling, T. Palmer and P. Williams, Eds., Cambridge University Press, pp. 35-72.
  27. Hanrahan, J. L., S. Kravtsov, and P. J. Roebber, 2009: Quasi-periodic decadal cycles in levels of lakes Michigan and Huron. Great Lakes Res.,35, 30–35. DOI: 10.1016/j.jglr.2008.11.004.
  28. Kravtsov, S., Hoeve, J. E. T., S. B. Feldstein, S. Lee, and S.-W. Sun, 2009: The relationship between statistically linear and nonlinear feedbacks and zonal-mean flow variability in an idealized climate model. J. Atmos. Sci., 66, 353–372. DOI: 10.1175/2008JAS2804.1.
  29. Kravtsov, S., W. K. Dewar, M. Ghil, J. C. McWilliams, and P. Berloff, 2008: A mechanistic model of mid-latitude decadal climate variability. Physica D, 237, 584–599, DOI:10.1016/j.physd.2007.09.025.
  30. Kravtsov, S., and C. Spannagle, 2008: Multi-decadal climate variability in observed and simulated surface temperatures. J. Climate, 21, 1104–1121. DOI: 10.1175/2007JCLI1874.1.
  31. Kravtsov, S., W. K. Dewar, P. Berloff, J. C. McWilliams, and M. Ghil, 2008: North Atlantic climate variability in coupled models and data. Nonlin. Proc. Geophys., 15, 13­–24. DOI: 10.5194/npg-15-13-2008.
  32. Tsonis, A. A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, DOI: 10.1029/2007GL030288.
  33. Kravtsov, S., W. K. Dewar, P. Berloff, J. C. McWilliams, and M. Ghil, 2007: A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model. Dyn. Atmos. Oceans, 43, 123–150, DOI: 10.1016/j.dynatmoce.2006.08.001.
  34. Berloff, P., S. Kravtsov, W. K. Dewar, and J. C. McWilliams, 2007: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37, 1103–1121. DOI: 10.1175/JPO3041.1.
  35. Kravtsov, S. P. Berloff, W. K. Dewar, M. Ghil, and J. C. McWilliams, 2006: Dynamical origin of low-frequency variability in a highly nonlinear mid-latitude coupled model. J. Climate, 19, 6391–6408. DOI: 10.1175/JCLI3976.1.
  36. Kondrashov, D., S. Kravtsov, and M. Ghil, 2006: Empirical mode reduction in a model of extratropical low-frequency variability. J. Atmos. Sci., 63,1859-1877. DOI: 10.1175/JAS3719.1.
  37. Kravtsov, S., A. W. Robertson, and M. Ghil, 2006: Multiple regimes and low-frequency oscillations in the Northern Hemisphere’s zonal-mean flow. J. Atmos. Sci., 63, 840-860. DOI: 10.1175/JAS3672.1.
  38. Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005: A hierarchy of data-based ENSO models. J. Climate, 18, 4425-4444. DOI: 10.1175/JCLI3567.1.
  39. Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multi-level regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Climate, 18, 4404-4424. DOI: 10.1175/JCLI3544.1.
  40. Kravtsov, S., A. W. Robertson, and M. Ghil, 2005: Bimodal behavior in the zonal mean flow of a baroclinic β-channel model. J. Atmos. Sci., 62,1746­–1769. DOI: 10.1175/JAS3443.1.
  41. Kravtsov, S., and M. Ghil, 2004: Interdecadal variability in a hybrid coupled ocean-atmospheresea-ice model. J. Phys. Oceanogr., 34, 1756-1775. DOI: 10.1175/1520-0485(2004)034<1756:IVIAHC>2.0.CO;2.
  42. Kravtsov, S. V., A. W. Robertson, and M. Ghil, 2003: Low-frequency variability in a baroclinic β-channel model with land-sea contrast. J. Atmos. Sci., 60, 2267-2293, 409TSTS56. DOI: 10.1175/1520-0469(2003)060<2267:LVIABC>2.0.CO;2.
  43. Kravtsov, S. V., and W. K. Dewar, 2003: On the role of thermohaline advection and sea ice in glacial transitions. J. Geophys. Res. Oceans, 108, 3203-3221, 2002JC001439. DOI: 10.1029/2002JC001439.
  44. Kravtsov, S. V., and A. W. Robertson, 2002: Midlatitude ocean-atmosphere interaction in an idealized coupled model. Clim. Dyn., 19, 693-711. DOI: 10.1007/s00382-002-0256-6.
  45. Kravtsov, S. V., and A. W. Robertson, 2001: On midlatitude ocean-atmosphere interaction in a simple coupled model. CLIVAR Exchanges, 19, 7-8.
  46. Kravtsov, S. V., 2000: Sea ice and climate. Part II: Model climate sensitivity to perturbations of the hydrological cycle. J. Climate, 13, 463-487. DOI: 10.1175/1520-0442(2000)013<0463:SIACPI>2.0.CO;2.
  47. Kravtsov, S. V., and W. K. Dewar, 1998: Multiple equilibria and transitions in a coupled ocean-atmosphere box model. J. Phys. Oceanogr., 28, 389-397. DOI: 10.1175/1520-0485(1998)028<0389:MEATIA>2.0.CO;2.
  48. Kravtsov, S. V., 1998: Sea Ice and Climate Sensitivity. PhD Thesis, Department of Oceanography, Florida State University.

Articles Pending Publication and Under Review

  1. Kravtsov, S.,  2017: Comment on “Comparison of low-frequency internal climate variability in CMIP5 models and observations”. J. Climate, submitted. Main text + Supporting Info.
  2. Kravtsov, S., V. Brazauskas, and P. Roebber, 2017: A virtual climate library of surface temperature over North America for 1979–2015. Nature Scientific Data, accepted. Main text + Supplemental file 1Supplemental file 2 + Supplemental script + Supplemental Movie.
  3. Jajcay, N., S. Kravtsov, A. Tsonis, and M. Palus, 2017: Synchronization and causality across time-scales: Complex dynamics and extremes in El Nino/SouthernOscillation. Nature Communications, under review.
  4. Kravtsov, S., N. Sugiyama, and P. Roebber, 2017:  Role of nonlinear dynamics in accelerated warming of Great Lakes, In: Nonlinear Advances in Geosciences, A. A. Tsonis, Ed., Springer, in press.
  5. Sugiyama, N., S. Kravtsov, and P. Roebber, 2017b: Simulating recent warming of the Great Lakes in an idealized lake–ice–atmosphere modelJ. Climate, submitted.

Manuscripts in Preparation and Unpublished Manuscripts

  1. Roebber, P., S. Kravtsov, and V. Brazauskas, 2017: The actuarial utility of weather and climate predictions. 2018 Climate Change, Casualty Actuarial Society, in preparation.
  2. Gulev, S. K., N. Tilinina, S. Kravtsov, O. Zolina, and P. Roebber, 2017: On estimation of cyclone deepening rates from cyclone tracking results. Mon. Wea. Rev., in preparation.
  3. Kravtsov, S.,  and A. A. Tsonis, 2008: How much of global warming is due to natural climate variability? Unpublished manuscript
  4. Kravtsov, S., N. Suqiyama, and A. A. Tsonis, 2015: Transient behavior in the Lorenz model. Nonlin. Proc. Geophys., not accepted.